
The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2014 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2014)
14, Number 1, pp. 22–59

Calibrating survey data using iterative

proportional fitting (raking)

Stanislav Kolenikov
Abt SRBI

Columbia, MO

kolenikovs@srbi.com

Abstract. In this article, I introduce the ipfraking package, which implements
weight-calibration procedures known as iterative proportional fitting, or raking,
of complex survey weights. The package can handle a large number of control
variables and trim the weights in various ways. It also provides diagnostic tools
for the weights it creates. I provide examples of its use and a suggested workflow
for creating raked replicate weights.

Keywords: st0323, ipfraking, mat2do, xls2row, survey, calibration, weights, raking,
iterative proportional fitting

1 Introduction and background

Large-scale social, behavioral, and health data are often collected via complex survey
designs that may involve some of or all the following: stratification, multiple stages of
selection, and unequal probabilities of selection (Korn and Graubard 1995, 1999). Ide-
ally, varying probabilities of selection are accounted for by using the Horvitz–Thompson
estimator of the totals (Horvitz and Thompson 1952; Thompson 1997); the remaining
sampling fluctuations can be further worked out by poststratification (Holt and Smith
1979).

However, aside from the planned differences in probabilities of obtaining a response
from a sampled unit, nonresponse is a practical problem that has been growing more
acute over the recent years (Groves et al. 2002; Pew Research Center 2012). The anal-
ysis weights that are provided along with the public-use microdata by data-collecting
agencies are designed to account for unequal probabilities of selection, nonresponse,
and other factors affecting imbalance between the population and the sample; thus the
analyses conducted on such microdata are generalizable to the target population. In
this article, I will discuss the specific issue in the process of creating survey weights:
calibrating survey weights to known control totals to ensure that the resulting weighted
data are representative of the population of interest.

c© 2014 StataCorp LP st0323

S. Kolenikov 23

1.1 Population totals

For a given finite population U of units indexed i = 1, . . . , N , the interests of survey
statisticians often lie in estimating the population total of a variable Y :

T (Y) =
∑

i∈U

Yi (1)

(As is customary in sampling texts, the population quantities will be denoted with
capital letters and the sample quantities with lowercase letters. The finite population
is denoted as U , and the sample drawn from it is denoted as S. The indices of units
in the population are i ∈ U , and those of units in the sample are j ∈ S.) Many other
analytical problems can be cast in terms of estimating the totals of the existing or
auxiliary variables and then expressing the quantities of substantive interest (means,
ratios, regression coefficients) as functions of these totals (Skinner 1989). For instance,
the population mean, such as mean income or the average number of hours per week
spent watching television, is the ratio of the totals,

Y =
T (Y)

T (1)

where the denominator is a somewhat unusual total of a variable identically equal to 1,
that is, the estimator of the population size (if it is unknown). The mean for a domain
D (mean income of females, television hours of teenagers) is also a ratio of totals,

Y D =
T (Y Z)

T (Z)

where Zi = 1 when the unit is in the domain and Zi = 0 otherwise. Estimation of totals
is thus the cornerstone of survey statistics.

1.2 Probability weights

Suppose now that a sample S of n units indexed by j = 1, . . . , n is taken from U . If
the probability to select the ith unit is known to be πi, then the probability weights, or
design weights, are given by the inverse probability of selection:

w1i = π−1
i (2)

With these weights, an unbiased (design-based, nonparametric) estimator of the total
(1) is (Horvitz and Thompson 1952)

t1(y) =
∑

j∈S

yj
πj
≡
∑

j∈S

w1jyj (3)

The subindex 1 indicates that the weights w1i were used in obtaining this estimator.
Probability weights protect the end user from potentially informative sampling designs,
in which the probabilities of selection are correlated with outcomes, and the design-based
methods generally ensure that inference can be generalized to the finite population even
when the statistical models used by analysts and researchers are not specified correctly
(Pfeffermann 1993; Binder and Roberts 2003).

24 Raking survey data

1.3 Calibrated weights

Survey statisticians often have auxiliary information on the units in the frame. Some
of that information can be used at the sampling stage to inform stratification and
clustering. When creating areal probability samples of human populations, the survey
designers have geographic information on the sampled units: from strata that can be
defined as regions, states, or provinces and the primary sampling units (PSUs) that can
be defined as districts, counties, or census tracts down to the address of the sampled
household. When survey statisticians create establishment survey samples, the frame
information that they may have at their disposal can include the industry classification
codes and the size of establishment (number of employees or total revenue). When
statisticians draw samples from lists of persons, such as members of a professional
organization or patients in a hospital, the frame information can include the age and
gender of an individual. If such additional information is available, it is usually beneficial
to include it at the sampling stage to create more efficient designs. Unequal probabilities
of selection are then controlled with probability weights, which are implemented as
[pw=exp] in Stata (and can be permanently affixed to the dataset with the svyset

command).

In many situations, however, usable information is not available beforehand and may
appear only in the collected data. In the above example with areal samples, the census
totals of the age and gender distribution of the population may exist, but age and gender
of the sampled units is unknown until the survey measurement is taken on them. It is
still possible to capitalize on this additional data by adjusting the weights in such a way
that the reweighted data conforms to these known figures. The procedures to perform
these reweighting steps are generally known as weight calibration (Deville and Särndal
1992; Deville, Särndal, and Sautory 1993; Kott 2006, 2009; Särndal 2007).

Suppose there are several (categorical) variables, referred to as control variables,
that are available for both the population and the sample (age groups, race, gender,
educational attainment, etc.). The poststratification adjustment consists of breaking
down the population into poststratification cells defined by specific levels of the control
variables (that is, a cell in a multivariate contingency table) and adjusting the weights
within each cell so that the weights sum to the known total. Thus for the unit j in the
(population-level) poststratification cells Ck, the poststratified weight is

w2j = w1j

∑
i∈U 1(i ∈ Ck)∑

l∈S w1l1(l ∈ Ck)
(4)

where 1(·) is an indicator function taking the value of 1 when its argument is true and 0
otherwise. While the probability weight w1i is fixed, the poststratified weight w2j is
random because it depends on the random sample sizes of Ck ∩ S. The existing Stata
svyset options—poststrata() and postweight() (see [SVY] poststratification)—
handle this situation and, in particular, provide appropriate standard errors. The total
estimator based on w2j will be naturally denoted as t2(y), and the expression for it
coincides with (3) by replacing the probability weights w1j with poststratified weights
w2j .

S. Kolenikov 25

In more complex situations, using, say, five calibration variables (such as gender, age
groups, race or ethnicity, education, and urbanicity) leads to five-way contingency tables
that will likely have zero-count or very small count cells. Battaglia et al. (2009) suggest
collapsing the categories that contain less than 5% of either the sample cases or the
population units. For a sample of size n = 1000, which is typical for social science studies
or public opinion polls, this recommendation translates to cells of size

∑
j∈S 1(i ∈ Ck) ≤

50. Likewise, Lundström and Särndal (2010) recommend the minimal cell size of 30 to
50. Instead of adjusting every cell of a multiway table, weight calibration can target
adjusting only the margins, or low-level interactions, via an iterative optimization aimed
at satisfying the control totals for the control variables x = (x1, . . . , xp),

∑

j∈S

w3jxj = T (Xj) (5)

where the right-hand side is assumed to be known from a census or a higher-quality
survey. Deville and Särndal (1992) framed the problem of finding a suitable set of
weights as that of constrained optimization with the control equations (5) serving as
constraints and optimization targeted at making the discrepancy between the design
weights w1j and calibrated weights w3j as close as possible, in a suitable sense. Again
the appropriate total estimator can be denoted as t3(y).

1.4 Raking algorithm

An early algorithm to perform weight calibration is often attributed to Deming and
Stephan (1940), who used it to adjust the counts in a contingency table to satisfy
the known margins in log-linear analysis. In applications to the survey weights, the
algorithm is described below. At a basic level, this algorithm consists of an outer
cycle that checks convergence criteria and an inner cycle that iterates over the control
variables. The multi-index notation of the intermediate weights, wk,v

j , indicates the
weight of unit j computed in the outer cycle k after poststratifying with respect to the
vth variable. Thus k runs from 1 to a predefined maximum number of iterations K;
v runs from 0 (indicating the input weight to a given iteration) through 1 (indicating
adjustment with respect to the first control variable) to p (indicating adjustment with
respect to the last control variable).

Algorithm 1: Basic raking

1. Initialize the iteration counter k ← 0 and the weights as w0,p
j ← w1j . (That is,

use the base weights to initialize the raked weight; the superscript 0, p is used only
for consistency with the notation in the next step.)

2. Increment the iteration counter k ← k+1, and update the weights wk,0
j ← wk−1,p

j .
(That is, use the result of the previous outer cycle iteration to initialize the weights
for the current outer cycle iteration.)

26 Raking survey data

3. Inner cycle: Go over the control variables v = 1, . . . , p, and update the weights

wk,v
j =

wk,v−1
j

T (Xv)∑
l∈S w

k,v−1
l xvl

, xvj 6= 0

wk,v−1
j , xvj = 0

(That is, poststratify with respect to the vth control variable.)

4. If discrepancies between the weighted totals
∑

j∈S w
k,p
j xv and the target totals

T (Xv) are within prespecified tolerances for all v = 1, . . . , p, declare convergence
and go to step 7.

5. If the number of iterations k reaches a prespecified limit K, declare nonconver-
gence, issue corresponding warnings, and go to step 7.

6. Otherwise, return to step 2. (That is, the achieved accuracy of the control targets
is insufficient, and more work is needed.)

7. Return the weights wk,p
j at the final stage as the calibrated weights.

In practice, control totals are usually expressed as population counts or proportions
in categories of discrete variables (such as gender, race or ethnicity, or education-level
groups). The control variables are then 0 and 1 indicators representing the particular
groups or their low-level interactions. Effectively, the algorithm implements poststrati-
fication adjustment (4), treating each control variable as the poststratification variable
and cycling over these variables within each iteration. In terms of multivariate opti-
mization, this algorithm proceeds by optimizing over each margin in sequence. While it
is very simple and very explicit in terms of the algebra involved, it is also much slower
compared with Newton–Raphson-based methods.

Deming and Stephan (1940) stated that the algorithm minimizes the quadratic dis-
crepancy

∑

j∈S

(w1j − w3j)
2

w1j

under the calibration constraints (5). However, the quadratic problem can be solved
explicitly to produce linear calibrated weights that lead to estimates identical to the
generalized regression estimates (case 1 of Deville and Särndal [1992]). The raking
algorithm instead solves the optimization problem with an objective function that can
be expressed as (case 2 of Deville and Särndal [1992])

∑

j∈S

w3j ln(w3j/w1j)− w3j + w1j

S. Kolenikov 27

1.5 Variance estimation

Aside from the primary challenge of finding a good set of weights (which is generally
solved through iterative optimization), an additional methodological challenge with cal-
ibrated estimators is variance estimation. If variables x1, . . . , xp were used for weight
calibration, then the asymptotic variance of the calibrated estimator of the survey vari-
able y is

V
{
tm(y)

}
=
∑

k,l∈U

(πkl − πkπl)
Yk −X′

kB

πk

Yl −X′
lB

πl
, m = 2, 3 (6)

where B is the vector of coefficients from the census regression,

B =

(∑

i∈U

XiX
′
i

)−1∑

i∈U

XiYi (7)

This variance can be estimated with

v
{
tm(y)

}
=
∑

k,l∈S

πkl − πkπl
πkl

yk − x′
kb

πk

yl − x′
lb

πl
, m = 2, 3 (8)

where the regression coefficients now solve the sample regression problem:

b =

∑

j∈S

wjxjx
′
j

−1
∑

j∈S

wjxjyj (9)

In regression (9), the calibrated weights w3j should be used. As demonstrated by
D’Arrigo and Skinner (2010), the use of design weights w1j leads to serious biases in the
resulting variance estimator. The estimator (8) is difficult to use in practice, especially
with the publicly released versions of the data. First, this estimator uses the original
design weights w1i = π−1

i . Hence the publicly released dataset must include both the
calibrated weights and the design weights, which may create confusion. Second, the
end user of the data must be given the set of the control variables, which may not be
possible if confidential variables were used in calibration. Third, this estimator is not
necessarily implemented in survey packages (a third-party package, calibest (D’Souza
2011), implements (8) in Stata). Finally, the estimator requires second-order selection
probabilities, which are rarely computed in practice. The last reason is a very general
issue with the Horvitz–Thompson estimator (3) as well. Its variance is

V
{
t1(y)

}
=
∑

k,l∈U

(πkl − πkπl)
Yk
πk

Yl
πl

(10)

While the second-order selection probabilities are nominally required for this estimator,
in practice, simplifications are taken, for example, to approximate the actual design as
the stratified two-stage sample in which the PSUs are drawn with replacement (as is done,

28 Raking survey data

for example, in Stata’s nhanes2.dta example dataset). Because of these complications,
variance estimation with calibrated data usually proceeds along the lines of replicate
variance-estimation methods (Shao 1996; Kolenikov 2010).

When the control totals are obtained from another survey, the sampling variability
of these methods should be taken into account (Dever and Valliant 2010). For instance,
to calibrate population surveys conducted in the United States, researchers often use
the American Community Survey (U.S. Census Bureau 2009) for demographic variables
and the National Health Interview Survey (Botman et al. 2000) for phone usage. These
large-scale surveys have sample sizes in the hundreds of thousands. For typical surveys
with sample sizes in the hundreds to low thousands, the impact on the standard errors
is in the second or third decimal point and is usually ignored.

1.6 Pros and cons of weight calibration

By comparing expressions (6) and (10), we can identify the source of efficiency gains
associated with weight calibration. If the survey variable y is associated with calibration
variables x1, . . . , xp—in the sense of having a nontrivial R2 in the census regression
(7)—then the calibrated estimator is (asymptotically) more efficient than the direct
Horvitz–Thompson estimator by a factor of 1−R2.

Weight calibration can also reduce nonresponse and coverage errors (Chang and Kott
2008; Kott 2006; Lundström and Särndal 1999), which feature prominently as some of
the most important issues that the survey community currently faces (Groves 2006).
However, for weight calibration to be successful in reducing the nonresponse bias, the
control variables need to be correlated with the response propensity or the outcome
variables or both (Bethlehem 2002; Judkins et al. 2007).

Weight calibration comes with some costs, too. From an analytic perspective, ma-
nipulating the weights almost inevitably leads to an increase in their variation, which in
turn leads to increases in the design effects (DEFFs). For the unequal probability sample
without stratification or clustering, Korn and Graubard (1999) show that the DEFF is

DEFFw =

∑
j∈S w

2
j(∑

j∈S wj

)2 = 1 + CV
2
w (11)

where CVw is the coefficient of variation (CV) of the weights (a simple standard deviation
divided by the simple mean). In practice, I have encountered increases of this CV

between 20% and 100% on the relative scale, or between 0.2 and 1.5 on the absolute scale,
for DEFFs varying between 1 and 2 in the typical public opinion surveys. From a practical
perspective, weight calibration requires additional time by statisticians preparing the
data, which increases the cost of the survey and the time between the end of the data-
collection period and delivery of the final dataset. Additionally, as noted in section 1.5,
variance estimation with calibrated data tends to get complicated.

S. Kolenikov 29

1.7 Weight trimming

As expression (11) shows, it is undesirable for a survey to have a large spread of weights
(Théberge 2000): many survey estimates are unduly affected by the observations with
large weights, while those with small weights make but minimal contributions. The
impact of the observations with large weights will be exacerbated in the analysis of
domains, where these observations will stand apart even more given the smaller sizes
of domains. For these reasons, weights are often trimmed. The largest weights are
reduced (say, all the weights greater than the largest allowable number are reduced to
that number), and the smallest weights are increased so that for all j, L ≤ w3j ≤ U
for some absolute limits L and U . Alternatively, the relative change in weights can be
constrained: for all j, l ≤ w3j/w1j ≤ u for some ratio limits l and u. Weight trimming
may introduce bias, so the amount of trimming needs to be seen as a tradeoff between
an apparent improvement in efficiency and latent bias (Elliott 2008).

With trimming, the modified algorithm implemented in ipfraking proceeds as fol-
lows. (See section 2.1 for the syntax diagram and section 2.2 for specification of the
trimming options. If not specified otherwise, the default values are U = u = +∞,
L = l = 0.)

Algorithm 2: Raking with simultaneous trimming

1. Initialize the outer cycle iteration counter k ← 0. Initialize the weights w0,p
j ←

w1j . Set D0 =∞. (This is a notation introduced for consistency with notation in
step 9.)

2. Increment the outer cycle iteration counter k ← k + 1, and update the weights
wk,0

j ← wk−1,p
j .

3. Initialize the inner cycle over control variables: v ← 1.

4. Update the weights using the vth variable as the poststratification variable:

wk,v
j =

wk,v−1
j

T (Xv)∑
l∈S w

k,v−1
l xvl

, xvj 6= 0

wk,v−1
j , xvj = 0

5. If the trimfrequency() option is specified as often, perform weight trimming:

wk,v
j ← min

(
wk,v

j , U, uw0,p
j

)

wk,v
j ← max

(
wk,v

j , L, lw0,p
j

)

That is, trim the weights that are greater than U in absolute terms or have
increased by more than a factor of u from the initial weight; reduce such weights
to the largest allowed value. Likewise, trim the weights that are less than L in
absolute terms or have dropped by more than a factor of l from the initial weight;
increase such weights to the smallest allowed value.

30 Raking survey data

6. Increment the internal cycle counter v ← v + 1.

7. If v ≤ p, cycle back to step 4. Otherwise, the inner cycle over the control variables
is completed; proceed to the next step.

8. If the trimfrequency() option is specified as sometimes, perform weight trim-
ming:

wk,p
j ← min

(
wk,p

j , U, uw0,p
j

)

wk,p
j ← max

(
wk,p

j , L, lw0,p
j

)

9. If the largest change in weights,

Dk = max
j∈S

∣∣∣
wk,p

j

wk−1,p
j

− 1
∣∣∣

is less than or equal to tolerance δD (given in the tolerance() option), declare
convergence of weights and go to step 11. If Dk > Dk−1, k > 1, the algorithm
may be diverging; stop the outer cycle iterations, issue a nonconvergence message,
and go to step 11. Otherwise (that is, if δD < Dk < Dk−1), move to the next
step: there is some room for weight improvement.

10. If the number of the outer cycle iterations k reaches a prespecified limit K, stop
the outer cycle iterations, and issue a nonconvergence message. Otherwise, cycle
back to step 2.

11. If the trimfrequency() option is specified as once, perform weight trimming:

wk,p
j ← min

(
wk,p

j , U, uw0,p
j

)

wk,p
j ← max

(
wk,p

j , L, lw0,p
j

)

12. If discrepancies between the weighted totals
∑

j∈S w
k,p
j xv and the target totals

T (Xv) are greater than prespecified tolerances δT (the ctrltolerance() option),

∣∣∣
T (Xv)−

∑
j∈S w

k,p
j xv

T (Xv) + 1

∣∣∣ > δT

for at least one v = 1, . . . , p, issue a warning message (see section 5).

13. Return the weights wk,p
j as calibrated weights and exit.

The algorithm may be exited for three possible reasons: reaching the maximum
number of iterations (indicative of lack of convergence), finding that the changes in
weights started diverging, or reaching the state where the weights do not change from one
iteration of poststratification and possibly trimming to the next. Even in the last case,
convergence of the weights does not imply convergence of the weighted totals to their
targets. Hence there are qualitatively three possible outcomes of running ipfraking:

S. Kolenikov 31

1. The weights have converged as checked in step 9, and the weighted control totals
are within tolerances from their targets, as checked in step 12. The raked weights
are most likely safe to use, although additional quality control checks, including
computation of the DEFF (11), histograms, and tabulations with the main variables
of interest would be recommended.

2. The weights have converged as checked in step 9, but the weighted control totals
are not sufficiently close to their targets, as checked in step 12. The raked weights
should be reviewed and may not be safe to use. This often happens when the
trimming options are too aggressive, when the data and the control totals are
incompatible, or when the control totals themselves are poor (for example, the
matrices sum to different values, for which ipfraking will issue an error message).

3. The weights have not converged after the prespecified number of iterations or
started diverging. Again the resulting weights are likely to be unsatisfactory. The
number of iterations should be increased, the tolerances should be decreased, or
the nodivergence option can be specified if optimization aborted because the
weight convergence criteria went up.

1.8 Other weight calibration programs

Several packages with similar functionality have been circulating in the Stata com-
munity. Winter’s (2002) survwgt is the most robust and versatile of these, and its
survwgt rake subcommand implements the same raking algorithm as the basic algo-
rithm of ipfraking. The functionality of survwgt also includes valuable capabilities
to create the balanced repeated replication and jackknife replicate weights (Kolenikov
2010) as well as nonresponse cell adjustments. One feature that survwgt does not have
is trimming.

A more recent raking package is ipfweight (Bergmann 2011). It implements the
basic raking and provides relative trimming similar to trimfrequency(often).

Another user-contributed Stata package, maxentropy (Wittenberg 2010), imple-
ments case 4 of Deville and Särndal (1992) using Newton–Raphson optimization with
analytical second derivatives and is much faster than ipfraking.

Compared with these packages, ipfraking was developed to work in the weight
production environment of a survey company. To be an effective tool, the weight cali-
bration procedure should not only produce the correct figures but also provide extensive
diagnostics and robustness checks that can potentially be analyzed in semiautomated
fashion and be robust and fail softly with incorrectly specified inputs. For instance, all
the above packages rely on the user to match the variables and their targets, and some
are relatively fragile numerically when the initial weights generate totals that are far off
their targets. In ipfraking, as you will shortly see, the match between variables and
their targets is implemented internally through metadata (variable names and values)
stored in Stata target matrices as the necessary variables and their categories are picked
up by ipfraking from the targets. Thus the number of necessary inputs and, hence,

32 Raking survey data

the likelihood of user error (through incorrect ordering of variables and their categories)
are reduced. The targets, in turn, can be easily obtained from calibration datasets such
as the American Community Survey. Also ipfraking defines convergence in terms of
the values of weights rather than the target discrepancies, which are used in other pack-
ages. It thus allows the possibility of the raking procedure converging computationally
(weights stop changing from one iteration to the next) and then diagnoses the statistical
convergence, that is, whether the targets are being satisfied.

Aside from the internal convergence diagnostics, the weights produced by ipfraking

were compared with those produced by survwgt and ipfweight as a certification step
(Gould 2001), and were found to be identical within numerical accuracy.

2 The ipfraking command

2.1 Syntax

ipfraking
[
if
] [

in
]
[pw=varname], ctotal(matname

[
matname ...

]
)

{generate(newvar) | replace}
[
tolerance(#) iterate(#) nodivergence

ctrltolerance(#) trace alpha(#) trimhiabs(#) trimhirel(#)

trimloabs(#) trimlorel(#) trimfrequency(keyword) double meta nograph

loglevel(#)
]

Note that the weight statement [pw=varname] is required and must contain the initial
weights.

2.2 Options

Required options

ctotal(matname
[
matname . . .

]
) supplies the names of the matrices that contain the

control totals as well as metadata about the variables to be used in calibration.
ctotal() is required.

Technical note

The row and column names of the control total matrices (see [P]matrix rownames)
should be formatted as follows:

• rownames: the names of the control variables.

• colnames: the values the control variables take.

• coleq: the name of the variable for which the total is computed; typically, it is
identically equal to 1.

See examples in section 4.

S. Kolenikov 33

generate(newvar) specifies the name of the new variable to contain the raked weights.
generate() or replace is required.

replace indicates that the weight variable supplied in the [pw=varname] expression
should be overwritten with the new weights. replace or generate() is required.

Options to control convergence

Technical note

Convergence in ipfraking is defined in terms of the maximum relative change in
weights:

Dk = max
j∈S

|wk,p
j − wk−1,p

j |
wk−1,p

j

(12)

WhenDk is small, Dk < δD, it means that the weights stop changing between iterations;
that is, the algorithm came to its steady state. On the other hand, if Dk > Dk−1, it
means that the algorithm may start diverging, at which point it might be reasonable to
terminate it. See step 9 of algorithm 2 in section 1.7.

Once the algorithm terminates, it also checks whether the control totals are satisfied.
Specifically, for each of the control total matrices M1, . . . ,Mp, the relative difference

versus the corresponding weighted sample totals M̂1, . . . , M̂p is computed with

mc = mreldif
(
M̂c,Mc

)

where the maximum relative difference of two matrices is

mreldif(A,B) = max
ij

|aij − bij |
1 + |bij |

as defined in [D] functions. A control relation is satisfied if mc < δT ; otherwise, a
warning is issued. See step 12 of algorithm 2 in section 1.7.

Iterations continue until one of the following: k = K, a specified number of iterations,
Dk < δD, or Dk > Dk−1.

tolerance(#) defines the Dk-convergence criterion, that is, δD. Convergence will be
declared if the largest relative difference of the weights in two successive iterations
(a full cycle over all raking variables) does not exceed this value. The default is
tolerance(0.000001).

iterate(#) specifies the maximum number of iterations for the algorithm. The default
is iterate(2000).

nodivergence overrides the check that Dk > Dk−1, that is, ignores this termination
condition.

34 Raking survey data

ctrltolerance(#) defines the criterion δT to assess the accuracy of the control to-
tals. If, upon convergence of the algorithm (see the tolerance() option), the
relative difference of the weighted totals and means and the control totals and
means is greater than this value, an error message will be issued. The default is
ctrltolerance(0.000001).

trace produces the trace plot to show how the control total discrepancy changes with
the iteration number; see section 4.4.

alpha(#) changes the adjustment factor to (factor)α.

Trimming options

trimhiabs(#) specifies the upper bound U on the greatest value of the raked weights.
The weights that exceed this value will be trimmed down so that w3j ≤ U for every
j ∈ S.

trimhirel(#) specifies the upper bound u on the adjustment factor over the baseline
weight. The weights that exceed the baseline times this value will be trimmed down
so that w3j ≤ uw1j for every j ∈ S.

trimloabs(#) specifies the lower bound L on the smallest value of the raked weights.
The weights that are smaller than this value will be increased so that w3j ≥ L for
every j ∈ S.

trimlorel(#) specifies the lower bound l on the adjustment factor over the baseline
weight. The weights that are smaller than the baseline times this value will be
increased so that w3j ≥ lw1j for every j ∈ S.

trimfrequency(keyword) specifies when the trimming operations are to be performed.
keyword can be one of the following:

often means that trimming will be performed after each marginal adjustment, that
is, within each iteration of the inner cycle inside step 5 of algorithm 2.

sometimes means that trimming will be performed after a full set of variables has
been used for poststratification, that is, at the end of each outer cycle iteration
at step 8 of algorithm 2. The default is trimfrequency(sometimes).

oncemeans that trimming will be performed after the outer loop converges at step 11
of algorithm 2.

The numeric trimming options trimhiabs(#), trimhirel(#), trimloabs(#),
and trimlorel(#) can be specified in any combination or can be entirely omitted
to produce untrimmed weights. By default, there is no trimming. See section 4.3 for
examples.

S. Kolenikov 35

Miscellaneous options

double specifies that the new variable named in the generate() option should be
generated as a double type (see [D] data types).

meta puts the names of the control vectors and the achieved control accuracies mc

as characteristics stored with the variable specified in the generate() option; see
section 4.5.

nograph omits the histogram of the calibrated weights, which can be used to speed
up ipfraking once the diagnostics on the weights are completed (for example, in
replicate-weight production).

loglevel(#) specifies the level of detail in the output. # can be one of the following:

0 specifies that only the iteration log will be produced. The default is loglevel(0).

1 provides additional output on the intermediate trimming steps.

2 provides a lot of detailed (and not always useful) output.

3 Utility programs

Aside from the main weight calibration program, the ipfraking package also provides
two utility programs to create and manipulate ipfraking-compatible matrices.

3.1 The mat2do command

Syntax

mat2do matrix name using filename
[
, replace append list type

]

Description

mat2do stores the values and the attributes (row and column names) of a Stata matrix
as a do-file. By running this do-file, one can fully reproduce the matrix. The names of
the matrix and the do-file are required.

Options

replace overwrites the existing do-file.

append adds the code to the existing do-file.

list adds the matrix list command to the end of the do-file so that when filename

is executed, the listing is provided for verification.

type lists the matrix and the resulting do-file.

36 Raking survey data

3.2 The xls2row command

Syntax

xls2row matrix name using filename, cellrange(start:end) sheet(name)

over(varname)
[
scale(#)

]

Description

The utility program xls2row reads the calibration totals from the specified Excel file
and stores them in the matrix matrix name. The name of the Excel file, the range of
cells, and the name of the sheet from which to take the values are required; they are
specified in the same way as in import excel (see [D] import excel). Mathematically,
xls2row performs a vector transformation of the matrix read from an Excel sheet, that
is, stores the result by columns. The matrix coleq of the resulting matrix is the naming
convention one.

To optimize performance, xls2row relies on preserve as an intermediate step. It is
thus advisable to run xls2row up front before loading potentially large datasets that
would otherwise be written to disk and restored several times.

Options

cellrange(start:end) specifies a range of cells in an Excel file, for example, B2:D15.
cellrange() is required.

sheet(name) specifies the name of a sheet from which to take values in an Excel file.
sheet() is required.

over(varname) is the variable corresponding to the control total being imported from
Excel. The columns of the resulting row vector matrix name will be labeled with
the values of varname (that is, as the matrix colname of the matrix matrix name),
and varname itself will appear as the matrix rowname of the matrix matrix name.
If the number of categories of varname does not match the number of nonmissing
imported values, an error message will be issued, and the target matrix will not be
created. over() is required.

scale(#) scales the entries of the resulting row vector so that they sum to #.

S. Kolenikov 37

4 Examples

4.1 Basic syntax and input requirements

In this very simple example, I will demonstrate the basic mechanics of ipfraking, its
input requirements, and its output. The following examples are intended to demon-
strate only the syntax and the output of ipfraking; they may or may not provide
substantively meaningful results.

Example 1

We will work with the standard example of svy data, an excerpt from the Second
National Health and Nutrition Examination Survey (NHANES II) dataset available from
the StataCorp website. We will introduce some small changes to the data so that
ipfraking will have some work to do.

. use http://www.stata-press.com/data/r13/nhanes2

. generate byte _one = 1

. svy: total _one, over(sex, nolabel)
(running total on estimation sample)

Survey: Total estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31

1: sex = 1
2: sex = 2

Linearized
Over Total Std. Err. [95% Conf. Interval]

_one
1 5.62e+07 1377465 5.34e+07 5.90e+07
2 6.10e+07 1396159 5.82e+07 6.38e+07

. matrix NHANES2_sex = e(b)

. matrix rownames NHANES2_sex = sex

38 Raking survey data

. svy: total _one, over(race, nolabel)
(running total on estimation sample)

Survey: Total estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31

1: race = 1
2: race = 2
3: race = 3

Linearized
Over Total Std. Err. [95% Conf. Interval]

_one
1 1.03e+08 2912042 9.71e+07 1.09e+08
2 1.12e+07 1458814 8213964 1.42e+07
3 2968728 1252160 414930.1 5522526

. matrix NHANES2_race = e(b)

. matrix rownames NHANES2_race = race

. matrix NHANES2_sex[1,1] = NHANES2_sex[1,1]*1.25

. matrix NHANES2_race[1,1] = NHANES2_race[1,1]*1.4

Let us now look at the matrices that will serve as an input to the raking procedure:

. matrix list NHANES2_sex, f(%12.0g)

NHANES2_sex[1,2]
_one: _one:

1 2
sex 70199350 60998033

. matrix list NHANES2_race, f(%12.0g)

NHANES2_race[1,3]
_one: _one: _one:

1 2 3
race 144199368.6 11189236 2968728

These input matrices are organized as follows. Input matrices always have a single row,
just as estimation results e(b) do. The column names follow the naming conventions
of e(b), namely, the name of the variable for which the total is being computed (here
one) and the numeric categories of the variable that was used in the over() option
(here sex, with values 1 for male and 2 for female, and race, with values 1 for white,
2 for black, and 3 for other). These values must be in an increasing order. Because
that variable is not stored in e(b) per se, it needs to be added to this matrix, which
is done in the form of the row name. The entries of the matrix are the totals to which
the weights in the categories of the control variables need to sum. In this example, they
are scaled to be the population totals. Alternatively, these can be made to sum to the
sample size, as is done sometimes in public opinion research, or to 1, which is what the
proportion estimation command would produce.

The input requirements in terms of control totals are thus made as simple as possible.
If a higher-quality survey is available, the survey statistician simply needs to obtain the

S. Kolenikov 39

totals for the categories of the control variables by using svy: total . . . , over(. . . ,
nolabel) and save the name of that variable along with the matrix. Note that the
total is computed with the over(. . . , nolabel) suboption to suppress the otherwise
informative labeling of the categories; ipfraking expects the numeric values of the
categories to be column names (see [P] matrix rownames). The name of the matrix
itself is immaterial, but it is a good programming practice to have informative names
(McConnell 2004). Thus the names of the matrices in the examples generally follow the
naming convention data source variable.

We are now ready to run ipfraking and see what it produces:

. ipfraking [pw=finalwgt], ctotal(NHANES2_sex NHANES2_race) generate(rakedwgt1)

Warning: the totals of the control matrices are different:
Target 1 (NHANES2_sex) total = 131197383
Target 2 (NHANES2_race) total = 158357332.6

Iteration 1, max rel difference of raked weights = .56227988
Iteration 2, max rel difference of raked weights = .00073288
Iteration 3, max rel difference of raked weights = 2.356e-07

Warning: the controls NHANES2_sex did not match

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 15299 10274 1914 90831 .6716
Adjust factor 1.3490 0.8846 1.5614

In this simple case with just two control variables and the control totals that are
not very different from the existing sample totals, the procedure converged very quickly
in three iterations. A diagnostic message was produced up front by ipfraking that
informed about apparent differences in total population counts as obtained from the
different control total matrices. As a result, the control totals for the variable that was
adjusted first (sex) could not match the required control totals even after the weights
converged in the sense of differing little between iterations. Both of these warnings are
produced only when problems are encountered.

The summary table is always produced and shows some relevant characteristics of
the original weights w1j , the raked weights w3j , and the raking ratios w3j/w1j . As
expected, the CV went up from 0.645 to 0.672.

The graphic output produced by ipfraking is shown in figure 1. Generally, we
want to inspect these graphs to see whether there are any unexpected patterns, such as
highly outlying values, gaps in the distribution (here there are only 6 distinct values of
the adjustment factor corresponding to the 2×3 combinations of the control variables),
or concentration near the limits of the weight range, as is typical for trimmed weights
(see section 4.3 below). These graphs also may inform later trimming decisions: the
trimming limits can be chosen to conform to the breaks in the distributions of the
untrimmed raked weights.

40 Raking survey data

0
5

0
0

1
0

0
0

1
5

0
0

F
re

q
u

e
n

c
y

0 20000 40000 60000 80000 100000
Raked weights

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
F

re
q

u
e

n
c
y

.8 1 1.2 1.4 1.6
Adjustment factor

Figure 1. Histograms of the raked weights and calibration ratios, example 1

4.2 Preparing control matrices from scratch

In many situations, the control totals will be obtained from outside Stata and need to
be prepared to work with ipfraking.

Example 2

Suppose we wanted to calibrate the NHANES II dataset to the latest control totals
available from the U.S. Census Bureau website. Using the tables S0101 from the 2011
American Community Survey 1-year estimates and NST-EST2011 from the U.S. Census
Bureau population projections, the latest available at the time of writing this article,
we can obtain the figures displayed in table 1.

S. Kolenikov 41

Table 1. Control totals for the 2011 U.S. population

Group Population

American Community Survey 2011 1-year estimates, table S0101
Male, total 153,267,860
Ages 20–39 27.4%
Ages 40–59 27.5%
Ages 60+ 17.3%
Female, total 158,324,057
Ages 20–39 26.0%
Ages 40–59 27.6%
Ages 60+ 20.7%

U.S. Census Bureau 2011 projections, table NST-EST2011-01
Northeast 55,521,598
Midwest 67,158,835
South 116,046,736
West 72,864,748

U.S. Census Bureau 2011 projections, table NC-EST2011-03
White 243,470,497
Black 40,750,746
Other 27,370,674

Total 311,591,917

Thus we have information in the two-way age-by-sex table as well as two additional
margins. We will need an additional sex-by-age group variable, and we will try to make
its values somewhat informative (for example, the value 12 of the variable sex age

means the first group of sex and the second group of age):

. generate byte age_grp = 1 + (age>=40) + (age>=60) if !mi(age)

. generate sex_age = sex*10 + age_grp

With that, the matrices will have to be defined explicitly, and their labels need to be
hand coded, too (see [P] matrix rownames). Note that the U.S. Census Bureau 2011
projections relate to the total population, while the target population of the study is
the population age 20+. Assuming that the age structure is the same across regions and
races, the control totals for region and race need to be rescaled to the adult population
to avoid the warning messages. (More accurate figures can be obtained from American
Community Survey microdata, which can be downloaded from the U.S. Census Bureau
website.)

42 Raking survey data

. matrix ACS2011_sex_age = (
> 153267860*0.274, 153267860*0.275, 153267860*0.173, // males
> 158324057*0.260, 158324057*0.276, 158324057*0.207 // females
>)

. matrix colnames ACS2011_sex_age = 11 12 13 21 22 23

. matrix coleq ACS2011_sex_age = _one

. matrix rownames ACS2011_sex_age = sex_age

. scalar ACS2011_total_pop = 311591917

. matrix ACS2011_adult_pop = ACS2011_sex_age * J(colsof(ACS2011_sex_age),1,1)

. matrix Census2011_region = (55521598, 67158835, 116046736, 72864748)

. matrix Census2011_region = Census2011_region * ACS2011_adult_pop /
> ACS2011_total_pop

. matrix colnames Census2011_region = 1 2 3 4

. matrix coleq Census2011_region = _one

. matrix rownames Census2011_region = region

. matrix Census2011_race = (243470497, 40750746, 27370674)

. matrix Census2011_race = Census2011_race * ACS2011_adult_pop /
> ACS2011_total_pop

. matrix colnames Census2011_race = 1 2 3

. matrix coleq Census2011_race = _one

. matrix rownames Census2011_race = race

Let us check the matrix entries and labels once again before producing the weights.
Note that the values of the control variable categories are given in an increasing order.

. matrix list ACS2011_sex_age, f(%10.0g)

ACS2011_sex_age[1,6]
_one: _one: _one: _one: _one: _one:

11 12 13 21 22 23
sex_age 41995394 42148662 26515340 41164255 43697440 32773080

. matrix list Census2011_region, f(%10.0g)

Census2011_region[1,4]
_one: _one: _one: _one:

1 2 3 4
region 40679030 49205289 85024007 53385843

. matrix list Census2011_race, f(%11.0g)

Census2011_race[1,3]
_one: _one: _one:

1 2 3
race 178383622 29856864.7 20053682.2

S. Kolenikov 43

The labels appear to be in place, so let us run ipfraking:

. ipfraking [pw=finalwgt], generate(rakedwgt2)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .19495004
Iteration 3, max rel difference of raked weights = .02204455
Iteration 4, max rel difference of raked weights = .00315355
Iteration 5, max rel difference of raked weights = .00043857
Iteration 6, max rel difference of raked weights = .00006061
Iteration 7, max rel difference of raked weights = 8.365e-06
Iteration 8, max rel difference of raked weights = 1.154e-06
Iteration 9, max rel difference of raked weights = 1.593e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 19227 4050 338675 .8717
Adjust factor 2.1464 0.9264 18.3694

The diagnostic plots for these weights are given in figure 2. They do appear to have
some outlying cases (which are not very clearly seen on these plots, because they are
single-count observations with outlying weights), and we will address them in the next
section with trimming.

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
F

re
q

u
e

n
c
y

0 100000 200000 300000 400000
Raked weights

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

F
re

q
u

e
n

c
y

0 5 10 15 20
Adjustment factor

Figure 2. Histograms of the raked weights and calibration ratios, example 2

44 Raking survey data

4.3 Trimming options

As discussed in section 1.7 above, if variability of the weights becomes excessive, the
weights can be trimmed by restricting the extremes. When one uses ipfraking trim-
ming options, upper and lower limits can be defined for either the absolute values of
the weights or the relative changes from the base weights. The frequency of the trim-
ming operations can also be controlled. Trimming can be applied once to the final data
(trimfreq(once)) at step 11 of algorithm 2. Alternatively, trimming can be applied
after every full cycle over variables at step 8 of algorithm 2. Finally, trimming can be
applied after each subiteration at step 5 of the algorithm.

Example 3

When we inspect the histograms in figure 2, it appears reasonable to restrict the
upper tail of the raked weights. A more detailed investigation of the histogram reveals
a somewhat greater concentration of the raked weights around the value of 160,000 and
sparse bars beyond 200,000. This latter number will be used as the top cutoff point for
trimming and is provided as an input to ipfraking via the trimhiabs() option. Let
us also specify the absolute lower bound of 2,000, which is the minimum of the origi-
nal weights; however, as the output in the previous example suggested, the calibrated
weights tend to run above 4,000, so specifying the lower limit as trimloabs(2000) may
not really affect the calibration procedure.

. ipfraking [pw=finalwgt], generate(rakedwgt3)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(200000) trimloabs(2000)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256
Iteration 3, max rel difference of raked weights = .02754514
Iteration 4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
Iteration 6, max rel difference of raked weights = .00018036
Iteration 7, max rel difference of raked weights = .00003391
Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

The resulting CV of weights, 0.857, is slightly better than that with unrestricted
range of weights, 0.872. The summary also shows that the weights were capped at
200,000, as requested.

Setting the absolute limits on the range of the raked weights is often very subjective.
A somewhat better plan might be to set limits in terms of the range of the adjustment
factors, as shown in the next example. The relative change in the weights can be

S. Kolenikov 45

bounded with the trimlorel() and trimhirel() options. We also demonstrate here
how to use the results of summarize to feed into ipfraking. While ensuring that
accurate numbers are being carried over in the context of the code, the approach is
fragile for interactive work: simply running the single line with the sole ipfraking

command that refers to the r() return values may break down if summarize was not
the immediately preceding command.

. summarize finalwgt

Variable Obs Mean Std. Dev. Min Max

finalwgt 10351 11318.47 7304.04 2000 79634

. ipfraking [pw=finalwgt], generate(rakedwgt4)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(`=2.5*r(max)´) trimloabs(`=r(min)´) trimhirel(6)

Iteration 1, max rel difference of raked weights = 5
Iteration 2, max rel difference of raked weights = .25592859
Iteration 3, max rel difference of raked weights = .0626759
Iteration 4, max rel difference of raked weights = .0158786
Iteration 5, max rel difference of raked weights = .00299304
Iteration 6, max rel difference of raked weights = .00070812
Iteration 7, max rel difference of raked weights = .00016401
Iteration 8, max rel difference of raked weights = .00003734
Iteration 9, max rel difference of raked weights = 8.434e-06
Iteration 10, max rel difference of raked weights = 1.898e-06
Iteration 11, max rel difference of raked weights = 4.265e-07

Warning: the controls ACS2011_sex_age did not match
Warning: the controls Census2011_region did not match
Warning: the controls Census2011_race did not match

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 21830 18115 4113 199085 .8298
Adjust factor 2.1323 0.8973 6.0000

Setting the trimming options too aggressively may lead to adverse consequences.
First, it may bias the estimates, as discussed in section 1.6. Second, as this example
demonstrates, it can impede (statistical) convergence: the output contains multiple
warnings about targets not being achieved within desired accuracy, while no problems
were encountered without trimming.

4.4 Tracking convergence

Let us now examine the issue of trimming frequency and demonstrate another diagnostic
plot that can be produced by ipfraking.

46 Raking survey data

Example 4

We return to the first set of options of example 3 and rerun the raking procedure.

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], generate(rakedwgt3)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(200000) trimloabs(2000) trimfreq(sometimes) trace

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21474256
Iteration 3, max rel difference of raked weights = .02754514
Iteration 4, max rel difference of raked weights = .00511347
Iteration 5, max rel difference of raked weights = .00095888
Iteration 6, max rel difference of raked weights = .00018036
Iteration 7, max rel difference of raked weights = .00003391
Iteration 8, max rel difference of raked weights = 6.377e-06
Iteration 9, max rel difference of raked weights = 1.199e-06
Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

The trace option requests that trace plots be added to the diagnostic plots, as shown
in figure 3. The trace plots are presented on the absolute scale and on the log scale.
The exponentially declining discrepancy appears to be a general phenomenon. In other
words, after the first few iterations, discrepancy between the currently weighted totals
and the control totals roughly follows the rate of const× αk for some α < 1, where k is
the (outer cycle) iteration number. When convergence is very slow or the sample size is
very large, this rule may be helpful in determining the number of iterations necessary to
achieve the required accuracy and, hence, the expected computing time. Zero cross-cells
and collinearity between the control variables may make the convergence factor α close
to 1, thus hampering convergence. This happens when the control variables have very
similar meaning, such as age and grade of children: it is impossible to have children of
age 8 in grade 10. Also sets of interactions of categorical variables, such as interactions
of age group and education along with age group and race, are guaranteed to produce
zero cells in the cross-tabulation: it is impossible to have any observations in the cells
defined by, say, “age under 40 interacted with higher education” on one margin against
“age above 60 interacted with white race” on the other.

S. Kolenikov 47

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

F
re

q
u

e
n

c
y

0 50000 100000 150000 200000
Raked weights

0
1

0
0

0
2

0
0

0
3

0
0

0
F

re
q

u
e

n
c
y

0 5 10 15 20
Adjustment factor

0
.2

.4
.6

.8

0 2 4 6 8 10
Iteration

Census2011_region

Census2011_race

1.000e−09

1.000e−07

.00001

.001

.1

0 2 4 6 8 10
Iteration

ACS2011_sex_age

Figure 3. Diagnostic plots for example 4

While trimfreq(sometimes) is the default in the presence of other trimming op-
tions, the behavior can be changed with explicit specification of trimming frequency.
Note that slightly different weights will be produced that way.

. ipfraking [pw=finalwgt], generate(rakedwgt5)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(200000) trimloabs(2000) trimfreq(often) trace

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .21613885
Iteration 3, max rel difference of raked weights = .02673316
Iteration 4, max rel difference of raked weights = .00480164
Iteration 5, max rel difference of raked weights = .00086195
Iteration 6, max rel difference of raked weights = .00015444
Iteration 7, max rel difference of raked weights = .00002762
Iteration 8, max rel difference of raked weights = 4.940e-06
Iteration 9, max rel difference of raked weights = 8.832e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18905 4033 200000 .8572
Adjust factor 2.1487 0.9220 18.9844

48 Raking survey data

. compare rakedwgt3 rakedwgt5

difference
count minimum average maximum

rakedwgt3<rakedwgt5 3638 -15.28125 -1.226752 -.0126953
rakedwgt3=rakedwgt5 12
rakedwgt3>rakedwgt5 6701 .0009766 .6660518 2471.578

jointly defined 10351 -15.28125 .000028 2471.578

total 10351

In this example, trimming the weights after adjusting each of the margins led to fewer
iterations. This may or may not translate to lower overall computing times because more
computing is performed within each iteration.

4.5 Metadata

The results of raking operations can be stored with the newly created weight variables
for later review and reproduction of the results. Let us reproduce the example in the
previous section, adding all the metadata available:

Example 5

. capture drop rakedwgt3

. ipfraking [pw=finalwgt], generate(rakedwgt3)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
> trimhiabs(200000) trimloabs(2000) meta

Iteration 1, max rel difference of raked weights = 14.95826

(output omitted)

Iteration 10, max rel difference of raked weights = 2.254e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 18908 4033 200000 .8573
Adjust factor 2.1486 0.9220 18.9828

S. Kolenikov 49

. char li rakedwgt3[]
rakedwgt3[command]: [pw=finalwgt], generate(rakedwgt3)

> ctotal(ACS2011_sex_age C..
rakedwgt3[trimloabs]: trimloabs(2000)
rakedwgt3[trimhiabs]: trimhiabs(200000)
rakedwgt3[trimfrequency]: sometimes
rakedwgt3[objfcn]: 2.25435521164e-07
rakedwgt3[maxctrl]: 3.00266819571e-08
rakedwgt3[converged]: 1
rakedwgt3[Census2011_race]: 7.48567522438e-09
rakedwgt3[Census2011_region]:

3.00266819571e-08
rakedwgt3[ACS2011_sex_age]: 4.13778301743e-09
rakedwgt3[note1]: Raking controls used: ACS2011_sex_age

> Census2011_regio..
rakedwgt3[note0]: 1

The following characteristics are stored with the newly created weight variable (see
[P] char):

command the full command as typed by the user
matrix name the relative matrix difference from the

corresponding control total; see [D] functions
trimhiabs(), trimloabs(), corresponding trimming options, if specified
trimhirel(), trimlorel(),
trimfrequency()

maxctrl the greatest mreldif between the targets
and the achieved weighted totals

objfcn the value of the relative weight change Dk (12)
at exit

converged whether ipfraking exited because of
convergence (1) or whether because of an
increase in the objective function or reaching
the limit on the number of iterations (0)

Also ipfraking stores the notes regarding the control matrices used and which of
the margins did not match the control totals, if any (see [D] notes).

4.6 Replicate weights

As discussed in section 1.5, one of the greater challenges of weight calibration is ensuring
that variance estimates take into account the greater precision achieved by adjusting the
sample toward the fixed population quantities. Because estimating the variances using
linearization is cumbersome, replicate variance estimation may be more attractive.

Example 6

The simplest code for calibrated replicate weights is obtained by calling ipfraking

from within bsweights (Kolenikov 2010), which can pass the name of a replicate-weight

50 Raking survey data

variable to an arbitrary calibration routine. In this example, we will use the same
settings as in section 4.2; thus we will use the calibrated weight rakedwgt2, which was
produced in that example, as the main weight for which the bootstrap weights provide
the measure of sampling variability.

. set rmsg on
r; t=0.00 9:51:00

. set seed 2013
r; t=0.00 9:51:00

. bsweights bsw, reps(310) n(-1) balanced dots
> calibrate(ipfraking [pw=@], replace nograph meta
> ctotal(ACS2011_sex_age Census2011_region Census2011_race))
Balancing within strata:
...............................

Rescaling weights
.. 50
.. 100
.. 150
.. 200
.. 250
.. 300
..........

r; t=265.05 9:55:25

. forvalues k=1/310 {
2. _dots `k´ 0
3. assert `: char bsw`k´[converged]´ == 1
4. assert `: char bsw`k´[maxctrl]´ < 10*c(epsfloat)
5. }

.. 50

.. 100

.. 150

.. 200

.. 250

.. 300

..........r; t=0.37 9:55:25

. svyset [pw=rakedwgt2], vce(bootstrap) bsrw(bsw*) dof(31)

pweight: rakedwgt2
VCE: bootstrap
MSE: off

bsrweight: bsw1 bsw2 bsw3 bsw4 bsw5 bsw6 bsw7 bsw8 bsw9 bsw10 bsw11 bsw12

(output omitted)

bsw301 bsw302 bsw303 bsw304 bsw305 bsw306 bsw307 bsw308 bsw309
bsw310

Design df: 31
Single unit: missing

Strata 1: <one>
SU 1: <observations>

FPC 1: <zero>
r; t=0.01 9:55:25

. set rmsg off

The options of bsweights request 310 replicate weights (a multiple of 31 strata),
resample one fewer PSU than available in a given stratum, and obtain the first-order bal-
ance within a stratum. With the two PSU/stratum design and these options, bsweights

S. Kolenikov 51

produces random half-samples of data. The at character, @, is a placeholder for the
name of the replicate-weight variable. For explanations of these and other options of
bsweights, see Kolenikov (2010). The procedure took about three minutes on a laptop
computer, which can be considered moderately computationally intensive beyond inter-
active. A new option of ipfraking in the above code is nograph, which suppresses the
histograms. The additional asserts (Gould 2003) following the bootstrap weight gen-
eration demonstrate how the minimal quality assurance can be done on the bootstrap
weights in the weight production workflow.

A more compact set of weights can be developed using the existing balanced repeat-
ed-replication weights and a slightly more explicit code cycling over the weight variables:

. use http://www.stata-press.com/data/r13/nhanes2brr, clear

. svy: proportion highbp
(running proportion on estimation sample)

BRR replications (32)
1 2 3 4 5

................................

Survey: Proportion estimation Number of obs = 10351
Population size = 117157513
Replications = 32
Design df = 31

BRR
Proportion Std. Err. [95% Conf. Interval]

highbp
0 .8941859 .0067023 .8805165 .9078553
1 .1058141 .0067023 .0921447 .1194835

. generate byte _one = 1

. generate byte age_grp = 1 + (age>=40) + (age>=60) if !mi(age)

. generate sex_age = sex*10 + age_grp

. ipfraking [pw=finalwgt], generate(rakedwgt2)
> ctotal(ACS2011_sex_age Census2011_region Census2011_race)

Iteration 1, max rel difference of raked weights = 14.95826
Iteration 2, max rel difference of raked weights = .19495004
Iteration 3, max rel difference of raked weights = .02204455
Iteration 4, max rel difference of raked weights = .00315355
Iteration 5, max rel difference of raked weights = .00043857
Iteration 6, max rel difference of raked weights = .00006061
Iteration 7, max rel difference of raked weights = 8.365e-06
Iteration 8, max rel difference of raked weights = 1.154e-06
Iteration 9, max rel difference of raked weights = 1.593e-07

Summary of the weight changes

Mean Std. dev. Min Max CV

Orig weights 11318 7304 2000 79634 .6453
Raked weights 22055 19227 4050 338675 .8717
Adjust factor 2.1464 0.9264 18.3694

52 Raking survey data

. forvalues k=1/32 {
2. quietly ipfraking [pw=brr_`k´], generate(brrc_`k´) nograph

> ctotal(ACS2011_sex_age Census2011_region Census2011_race)
3. _dots `k´ 0
4. }

................................

. svyset [pw=rakedwgt2], vce(brr) brrw(brrc*) dof(31)

pweight: rakedwgt2
VCE: brr
MSE: off

brrweight: brrc_1 brrc_2 brrc_3 brrc_4 brrc_5 brrc_6 brrc_7 brrc_8 brrc_9
brrc_10 brrc_11 brrc_12 brrc_13 brrc_14 brrc_15 brrc_16
brrc_17 brrc_18 brrc_19 brrc_20 brrc_21 brrc_22 brrc_23
brrc_24 brrc_25 brrc_26 brrc_27 brrc_28 brrc_29 brrc_30
brrc_31 brrc_32

Design df: 31
Single unit: missing

Strata 1: <one>
SU 1: <observations>

FPC 1: <zero>

. svy: proportion highbp
(running proportion on estimation sample)

BRR replications (32)
1 2 3 4 5

................................

Survey: Proportion estimation Number of obs = 10351
Population size = 228294169
Replications = 32
Design df = 31

BRR
Proportion Std. Err. [95% Conf. Interval]

highbp
0 .8730544 .0081501 .8564323 .8896766
1 .1269456 .0081501 .1103234 .1435677

The data can be analyzed with the standard svy prefix, and the standard errors will
appropriately capture the efficiency gains from weight calibration. No additional action
is required for the analyst or researcher.

Caution: The input weights for the replicate-weight calibration must be the prob-
ability replicate weights. The existing NHANES II weights have been adjusted for non-
response and calibrated by the data provider and are used above for demonstration
purposes only.

S. Kolenikov 53

5 Error messages and troubleshooting

5.1 Critical errors

The following critical errors will stop execution of ipfraking:

• pweight is required

The [pweight=. . .] component of ipfraking syntax is required. Probability
weights must be specified as inputs to ipfraking.

• ctotal() is required

The ctotal() option of ipfraking syntax is required. Names of the matrices
containing the control totals must be specified.

• one and only one of generate() or replace must be specified

Either the generate() option with the name of the new variable must be sup-
plied to ipfraking or replace to replace the variable specified in the [pw=. . .]
statement must be supplied to ipfraking. Both may not be specified.

• raking procedure appears diverging

The maximum relative difference of weights, Dk, has increased from the previous
iteration. This may or may not indicate a problem. Rerun ipfraking with the
nodivergence option to override the warning.

• cannot process matrix matrix name

For whatever reason, ipfraking could not process this matrix. The matrix may
not have been defined or the variables in this matrix cannot be found.

• variable varname corresponding to the control matrix matrix name

not found

The variables contained in row or column names of this matrix cannot be found.

• varname1 and varname2 variables are not compatible

When total varname1, over(varname2) was run, an error was encountered.
One of the variables may be a string variable or have missing values resulting in
an empty estimation sample.

• categories of varname do not match in the control matrix name and

in the data (nolab option)

There was a mismatch in the categories of varname found in the data and in the
control matrix matrix name. This could happen for any of the following reasons:
1) there were more categories in one than in the other; 2) the entries are in
the wrong order in the control matrix; 3) the labels in the control matrix do
not correspond to the category values in the dataset; or 4) the control matrix
was obtained via total varname2, over(varname), but the nolabel suboption

54 Raking survey data

of over() was omitted, and the labels of the control matrix may include some
unexpected text. Tabulate varname without labels, and compare the results with
the matrix listing of the matrix name.

• cannot compute controls for matrix name over varname with the

current weights

This is a generic error message that something bad happened while ipfraking

was computing the totals for the current set of weights. This error message is
generally rare, but because computing the totals may be the slowest operation of
the iterative optimization process, stopping ipfraking with a Ctrl+Break com-
bination or the Break graphical user interface button may produce this error
message.

• trimhiabs|trimloabs|trimhirel|trimlorel must be a positive number

One or more of the trimming options are given as a nonpositive number or a
nonnumber.

• trimhiabs must be greater than trimloabs

trimhirel must be greater than trimlorel

The trimming parameters are illogical (the lower bound is greater than the upper
bound). Respecify the values of the trimming parameters.

5.2 Other errors and warnings

The following warning messages may be produced by ipfraking. The program will
continue running, but you must double-check the results for potential problems.

• the totals of the control matrices are different

The sums of values of the control matrices are different. These sums will be listed
for review. Convergence is still possible, but some of the control total checks are
likely to fail.

• trimfrequency() option is specified without numeric settings; will

be ignored

The option trimfrequency() was specified without any numeric trimming op-
tions. There is no way to interpret this, and ipfraking will proceed without
trimming.

• trimfrequency() option is specified incorrectly, assume default

value (sometimes)

The trimfrequency() option contains something other than often, sometimes,
or once, and the default value is being used instead.

S. Kolenikov 55

• raking procedure did not converge

The maximum number of iterations was reached, but weights never met the con-
vergence criteria (see step 9 of algorithm 2 in section 1.7). The user may want to
increase the number of iterations or relax convergence criteria.

• the controls matrix name did not match

After convergence of weights was declared, ipfraking checked the control totals
again and found that the results differed from the target for one or more of the
control total matrices. Any of the following can cause this: 1) the sum of entries
of this particular matrix differs from the others; 2) the trimming options are too
restrictive and do not allow the weights to adjust enough; or 3) the problem may
not have a solution because of incompatible control totals or a bad sample.

• division by zero weighted total encountered with matrix name

control

The weights for a category of the control variable summed to 0. ipfraking will
skip the calibration of this variable and proceed to the next one.

• # missing values of varname encountered; convergence will be

impaired

A control variable has missing values in the calibration sample. ipfraking cannot
figure out how to deal with the weights for the observations with missing values.
The user would need to restrict the sample to nonmissing values of all control
variables, to impute the missing values, or to create a separate category for the
missing values of a given control variable (which may lead to difficulties in defining
valid population control totals for it).

6 Acknowledgments

The author is grateful to Ben Phillips, Andrew Burkey, and Brady West, as well as the
editor and an anonymous referee, who suggested additional functionality and provided
helpful comments to improve the readability of this article. The opinions stated in this
article are of the author only and do not represent the position of Abt SRBI.

7 References
Battaglia, M. P., D. Izrael, D. C. Hoaglin, and M. R. Frankel. 2009. Practical consider-
ations in raking survey data.
http://surveypractice.wordpress.com/2009/06/29/raking-survey-data/.

Bergmann, M. 2011. ipfweight: Stata module to create adjustment weights for surveys.
Statistical Software Components S457353, Department of Economics, Boston College.
http://econpapers.repec.org/software/bocbocode/s457353.htm.

56 Raking survey data

Bethlehem, J. 2002. Weighting nonresponse adjustments based on auxiliary information.
In Survey Nonresponse, ed. R. M. Groves, D. A. Dillman, J. L. Eltinge, and R. J. A.
Little, 275–288. New York: Wiley.

Binder, D. A., and G. R. Roberts. 2003. Design-based and model-based methods for
estimating model parameters. In Analysis of Survey Data, ed. R. L. Chambers and
C. J. Skinner, 29–48. Chichester, UK: Wiley.

Botman, S. L., T. F. Moore, C. L. Moriarity, and V. L. Parsons. 2000. Design and
estimation for the National Health Interview Survey, 1995–2004. Technical Report
130, National Center for Health Statistics.

Chang, T., and P. S. Kott. 2008. Using calibration weighting to adjust for nonresponse
under a plausible model. Biometrika 95: 555–571.

D’Arrigo, J., and C. Skinner. 2010. Linearization variance estimation for generalized
raking estimators in the presence of nonresponse. Survey Methodology 36: 181–192.

Deming, W. E., and F. F. Stephan. 1940. On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known. Annals of Mathemat-

ical Statistics 11: 427–444.

Dever, J. A., and R. Valliant. 2010. A comparison of variance estimators for poststrat-
ification to estimated control totals. Survey Methodology 36: 45–56.

Deville, J.-C., and C.-E. Särndal. 1992. Calibration estimators in survey sampling.
Journal of the American Statistical Association 87: 376–382.

Deville, J.-C., C.-E. Särndal, and O. Sautory. 1993. Generalized raking procedures in
survey sampling. Journal of the American Statistical Association 88: 1013–1020.

D’Souza, J. 2011. calibest: Stata module to estimate proportions and means after survey
data have been calibrated to population totals. Statistical Software Components
S457241, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s457241.html.

Elliott, M. R. 2008. Model averaging methods for weight trimming. Journal of Official

Statistics 24: 517–540.

Gould, W. 2001. Statistical software certification. Stata Journal 1: 29–50.

———. 2003. Stata tip 3: How to be assertive. Stata Journal 3: 448.

Groves, R. M. 2006. Nonresponse rates and nonresponse bias in household surveys.
Public Opinion Quarterly 70: 646–675.

Groves, R. M., D. A. Dillman, J. L. Eltinge, and R. J. A. Little, eds. 2002. Survey

Nonresponse. New York: Wiley.

Holt, D., and T. M. F. Smith. 1979. Post stratification. Journal of the Royal Statistical
Society, Series A 142: 33–46.

S. Kolenikov 57

Horvitz, D. G., and D. J. Thompson. 1952. A generalization of sampling without
replacement from a finite universe. Journal of the American Statistical Association

47: 663–685.

Judkins, D. R., D. Morganstein, P. Zador, A. Piesse, B. Barrett, and P. Mukhopadhyay.
2007. Variable selection and raking in propensity scoring. Statistics in Medicine 26:
1022–1033.

Kolenikov, S. 2010. Resampling variance estimation for complex survey data. Stata

Journal 10: 165–199.

Korn, E. L., and B. I. Graubard. 1995. Analysis of large health surveys: Accounting for
the sampling design. Journal of the Royal Statistical Society, Series A 158: 263–295.

———. 1999. Analysis of Health Surveys. New York: Wiley.

Kott, P. S. 2006. Using calibration weighting to adjust for nonresponse and coverage
errors. Survey Methodology 32: 133–142.

———. 2009. Calibration weighting: Combining probability samples and linear pre-
diction models. In Sample Surveys: Inference and Analysis, ed. D. Pfeffermann and
C. R. Rao, vol. 29B, 55–82. Oxford: Elsevier.

Lundström, S., and C.-E. Särndal. 1999. Calibration as a standard method for treatment
of nonresponse. Journal of Official Statistics 15: 305–327.

———. 2010. Design for estimation: Identifying auxiliary vectors to reduce nonresponse
bias. Survey Methodology 36: 131–144.

McConnell, S. 2004. Code Complete: A Practical Handbook of Software Construction.
2nd ed. Redmond, WA: Microsoft Press.

Pew Research Center. 2012. Assessing the representativeness of public opinion surveys.
Technical report, Pew Research Center for People and Press. http://www.people-
press.org/files/legacy-pdf/Assessing the Representativeness of Public Opinion Sur-
veys.pdf.

Pfeffermann, D. 1993. The role of sampling weights when modeling survey data. Inter-
national Statistical Review 61: 317–337.

Särndal, C.-E. 2007. The calibration approach in survey theory and practice. Survey

Methodology 33: 99–119.

Shao, J. 1996. Resampling methods in sample surveys (with discussion). Statistics 27:
203–254.

Skinner, C. J. 1989. Domain means, regression and multivariate analysis. In Analysis of

Complex Surveys, ed. C. J. Skinner, D. Holt, and T. M. F. Smith, 59–88. New York:
Wiley.

Théberge, A. 2000. Calibration and restricted weights. Survey Methodology 26: 99–107.

58 Raking survey data

Thompson, M. E. 1997. Theory of Sample Surveys. London: Chapman & Hall.

U.S. Census Bureau. 2009. Design and Methodology: American Community Survey.
Washington, DC: U.S. Government Printing Office.

Winter, N. 2002. survwgt: Stata module to create and manipulate survey weights.
Statistical Software Components S427503, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s427503.html.

Wittenberg, M. 2010. An introduction to maximum entropy and minimum cross-entropy
estimation using Stata. Stata Journal 10: 315–330.

About the author

Stanislav (Stas) Kolenikov is a principal survey scientist at Abt SRBI. His research interests
include application of statistical methods in public opinion, behavioral, and health survey
research, such as advanced sampling techniques, survey weighting, calibration, missing-data
imputation, and variance estimation. Aside from survey statistics, Stas has extensive experi-
ence developing and applying statistical methods in social sciences, with focus on structural
equation modeling and microeconometrics. He has been writing Stata programs since 1998,
when Stata was version 5.

S. Kolenikov 59

Appendix: Common notation

Ck Section 1.3 Calibration cell
Dk (12) Maximum relative difference of weights from iteration k − 1

to iteration k
δD Section 1.7 Convergence criteria for Dk

δT Section 1.7 Quality control criteria for control totals
i Section 1.1 Subscript i usually applies to units in population
j Section 1.1 Subscript j usually applies to units in sample
k Section 1.7 The outer cycle iteration number
K Section 1.7 The maximum number of the outer cycle iterations
l Section 1.7 Relative limit on weights: all the weights will be made

≥ (l × the input weight)
l Summation index, where I run out of other traditional integer

letters
L Section 1.7 Absolute limit on weights: all the weights will be made ≥ L
n Sample size; number of sampled units
N Population size; number of units in population or frame
πi Probability of selection of unit i specified by the sampling

design
S Section 1.1 Sample; set of sampled units
T (y) (1) Population-based total of variable (y)
tm(y) (3) Sample-based weighted estimate of the total T (y); subscript

m = 1, 2, 3 indicates the type of weights used in computing
the total

u Section 1.7 Relative upper limit on weights: all the weights will be made
≤ (u× the input weight)

U Section 1.7 Absolute upper limit on weights: all the weights will be made
≤ U

U Section 1.1 Universe or population; set of units in population
w1i (2) Probability (design) weights; inverse probability of selection
w2j (4) Poststratified weights; random; depend on group sizes in

sample; analytically computable
w3j Section 1.3 Calibrated (raked) weights; random; require iterative

optimization
xv Section 1.4 The vth calibration (control) variable, v = 1, . . . , p;

population total T (xv) known

