THE STATA JOURNAL

Editor
H. Joseph Newton
Department of Statistics
Texas A&M University
College Station, Texas 77843
979-845-8817; fax 979-845-6077
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors
Christopher F. Baum
Boston College

Nathaniel Beck
New York University

Rino Bellocco
Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

Maarten L. Buis
Tübingen University, Germany

A. Colin Cameron
University of California–Davis

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

David Epstein
Columbia University

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Frauke Kreuter
University of Maryland–College Park

Peter A. Lachenbruch
Oregon State University

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Roger Newson
Imperial College, London

Austin Nichols
Urban Institute, Washington DC

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Editorial Manager
Stata Press Copy Editors

Lisa Gilmore
Deirdre Patterson and Erin Roberson
The *Stata Journal* publishes reviewed papers together with shorter notes or comments, regular columns, book reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository papers that link the use of Stata commands or programs to associated principles, such as those that will serve as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go “beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could be of interest or usefulness to researchers, especially in fields that are of practical importance but are not often included in texts or other journals, such as the use of Stata in managing datasets, especially large datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata with topics such as extended examples of techniques and interpretation of results, simulations of statistical concepts, and overviews of subject areas.

For more information on the *Stata Journal*, including information for authors, see the web page

http://www.stata-journal.com

The *Stata Journal* is indexed and abstracted in the following:

- CompuMath Citation Index®
- Current Contents/Social and Behavioral Sciences®
- RePEc: Research Papers in Economics
- Science Citation Index Expanded (also known as SciSearch®)
- Social Sciences Citation Index®

Copyright Statement: The *Stata Journal* and the contents of the supporting files (programs, datasets, and help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the *Stata Journal*.

The articles appearing in the *Stata Journal* may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the *Stata Journal*.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the *Stata Journal*, in whole or in part, on publicly accessible web sites, file servers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the *Stata Journal* or the supporting files understand that such use is made without warranty of any kind, by either the *Stata Journal*, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the *Stata Journal* is to promote free communication among Stata users.

The *Stata Journal* (ISSN 1536-867X) is a publication of Stata Press. Stata, Mata, NetCourse, and Stata Press are registered trademarks of StataCorp LP.
Stata tip 87: Interpretation of interactions in nonlinear models

Maarten L. Buis
Department of Sociology
Tübingen University
Tübingen, Germany
maarten.buis@uni-tuebingen.de

When fitting a nonlinear model such as \texttt{logit} (see \texttt{[R] logit}) or \texttt{poisson} (see \texttt{[R] poisson}), we often have two options when it comes to interpreting the regression coefficients: compute some form of marginal effect or exponentiate the coefficients, which will give us an odds ratio or incidence-rate ratio. The marginal effect is an approximation of how much the dependent variable is expected to increase or decrease for a unit change in an explanatory variable; that is, the effect is presented on an additive scale. The exponentiated coefficients give the ratio by which the dependent variable changes for a unit change in an explanatory variable; that is, the effect is presented on a multiplicative scale. An extensive overview is given by Long and Freese (2006).

Sometimes, we are also interested in how the effect of one variable changes when another variable changes, called the interaction effect. Because there is more than one way in which we can define an effect in a nonlinear model, there must also be more than one way in which we can define an interaction effect. This tip deals with how to interpret these interaction effects when we want to present effects as odds ratios or incidence-rate ratios, which can be an attractive alternative to interpreting interaction effects in terms of marginal effects.

The motivation for this tip is many recent discussions on how to interpret interaction effects when we want to interpret them in terms of marginal effects (Ai and Norton 2003; Norton, Wang, and Ai 2004; Cornelißen and Sonderhof 2009). (A separate concern about interaction effects in nonlinear models that is often mentioned is the possible influence of unobserved heterogeneity on these estimates; for example, see Williams [2009]. But I will not deal with that potential problem here.) These authors point out a common mistake, interpreting the first derivative of the multiplicative term between two explanatory variables as the interaction effect. The problem with this is that we want the interaction effect between two variables \((x_1\text{ and } x_2)\) to represent how much the effect of \(x_1\) changes for a unit change in \(x_2\). The effect of \(x_1\), in the marginal effects metric, is the first derivative of the expected value of the dependent variable \(E[y]\) with respect to \(x_1\), which is an approximation of how much \(E[y]\) changes for a unit change in \(x_1\). The interaction effect should thus be the cross partial derivative of \(E[y]\) with respect to \(x_1\) and \(x_2\)—that is, an approximation of how much the derivative of \(E[y]\) with respect to \(x_1\) changes for a unit change in \(x_2\). In nonlinear models, this is typically different from the first derivative of \(E[y]\) with respect to the multiplicative term \(x_1 \times x_2\). This is where programs like \texttt{inteff} by Norton, Wang, and Ai (2004) and \texttt{inteff3} by Cornelißen and Sonderhof (2009) come in.
Fortunately, we can interpret interactions without referring to any additional program by presenting effects as multiplicative effects (for example, odds ratios, incidence-rate ratios, hazard ratios). However, the marginal effects and the multiplicative effects answer subtly different questions, and thus it is a good idea to have both tools in your toolbox.

The interpretation of results is best explained using an example. Here we study whether the effect of having a college degree (collgrad) on the odds of obtaining a “high” job (high_occ) differs between black and white women.

```
sysuse nlsw88
(NLSW, 1988 extract)
generate byte high_occ = occupation < 3 if occupation <.
(9 missing values generated)
generate byte black = race == 2 if race <.
drop if race == 3
(26 observations deleted)
generate byte baseline = 1
.logit high_occ black##collgrad baseline, or noconstant nolog
Logistic regression Number of obs = 2211
Wald chi2(4) = 504.62
Log likelihood = -1199.4399 Prob > chi2 = 0.0000

high_occ | Odds Ratio Std. Err.  z  P>|z|   [95% Conf. Interval]
---------|-----------------+-----------------+---------+--------+------------------------------------------
       1.black | .4194072   .0655069  -5.56  0.000   .3088072   .5696188
       1.collgrad | 2.465411   .293568   7.58  0.000   1.952238   3.113478
black#collgrad | 1 1 | 1.479715   .4132536   1.40  0.161   .8559637   2.558003
 baseline | .3220524   .0215596  -16.93  0.000   .2824512   .3672059
```

If we were to interpret these results in terms of marginal effects, we would typically look at the effect of the explanatory variables on the probability of attaining a high job. However, this example uses a `logit` model together with the `or` option, so the dependent variable is measured in the odds metric rather than in the probability metric. Odds have a bad reputation for being hard to understand, but they are just the expected number of people with a high job for every person with a low job. For example, the baseline odds—the odds of having a high job for white women without a college degree—is 0.32, meaning that within this category, we expect to find 0.32 women with a high job for every woman with a low job. The trick I have used to display the baseline odds is discussed in an earlier tip [Newson 2003]. The odds ratio for collgrad is 2.47, which means that the odds of having a high job is 2.47 times higher for women with a college degree. There is also an interaction effect between collgrad and black, so this effect of having a college degree refers to white women. The effect of college degree for black women is 1.48 times that for white women. So the interaction effect tells how much the effect of collgrad differs between black and white women, but it does so in multiplicative terms. The results also show that this interaction is not significant.
This example points to the difference between marginal effects and multiplicative effects. Now we can compute the marginal effect as the difference between the expected odds of women with and without a college degree, rather than as the derivative of the expected odds with respect to \texttt{collgrad}. The reason for computing the marginal effect as a difference is that \texttt{collgrad} is a categorical variable, so this discrete difference corresponds more closely with what would actually be observed. Although it is a slight abuse of terminology, I will continue to call it the marginal effect.

The \texttt{margins} command below shows the odds of attaining a high job for every combination of \texttt{black} and \texttt{collgrad}. The odds of attaining a high job for white women without a college degree is 0.32, while the odds for white women with a college degree is 0.79. The marginal effect of \texttt{collgrad} for white women is thus 0.47. The marginal effect of \texttt{collgrad} for black women is only 0.36. The marginal effect of \texttt{collgrad} is thus larger for white women than for black women, while the multiplicative effect of \texttt{collgrad} is larger for black women than for white women.

\begin{verbatim}
>margins, over(black collgrad) expression(exp(xb())) post
Predictive margins Number of obs = 2211
Model VCE : OIM
Expression : exp(xb())
over : black collgrad

| Delta-method | Margin | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|--------|-----------|------|------|---------------------|
| black#collgrad | | | | | |
| 0 0 | .3220524 | .0215596 | 14.94 | 0.000 | .2797964 .3643084 |
| 0 1 | .7939914 | .078188 | 10.15 | 0.000 | .6407457 .9472371 |
| 1 0 | .1350711 | .0190606 | 7.09 | 0.000 | .097713 .1724292 |
| 1 1 | .4927536 | .1032487 | 4.77 | 0.000 | .29039 .6951173 |

>. lincom 0.black#1.collgrad - 0.black#0.collgrad
(1) = 0bn.black#0bn.collgrad + 0bn.black#1.collgrad = 0

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|------|------|---------------------|
| (1) | .471939 | .081106 | 5.82 | 0.000 | .3129742 .6309038 |

>. lincom 1.black#1.collgrad - 1.black#0.collgrad
(1) = 1.black#0.collgrad + 1.black#1.collgrad = 0

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|------|------|---------------------|
| (1) | .3576825 | .1049933 | 3.41 | 0.001 | .1518994 .5634656 |
\end{verbatim}

The reason for this difference is that the multiplicative effects are relative to the baseline odds in their own category. In this example, these baseline odds differ substantially between black and white women: for white women without a college degree, we expect to find 0.32 women with a high job for every woman with a low job, while for
black women without a college degree, we expect to find only 0.14 women with a high job for every woman with a low job. So even though the increase in odds as a result of getting a college degree is higher for white women than for black women, this increase as a percentage of the baseline value is less for white women than for black women. The multiplicative effects control in this way for differences between the groups in baseline odds. However, notice that marginal and multiplicative effects are both accurate representations of the effect of a college degree. Which effect one wants to report depends on the substantive question, whether or not one wants to control for differences in the baseline odds.

The example here is relatively simple with only binary variables and no controlling variables. However, the basic argument still holds when using continuous variables and when controlling variables are added. Moreover, the argument is not limited to results obtained from logit. It applies to all forms of multiplicative effects, and so, for example, to odds ratios from other models such as ologit (see [R] ologit) and glogit ([R] glogit); relative-risk ratios ([R] mlogit); incidence-rate ratios (for example, [R] poisson, [R] nbreg, and [R] zip); or hazard ratios (for example, [ST] streg and [R] cloglog).

Acknowledgment

I thank Richard Williams for helpful comments.

References

Long, J. S., and J. Freese. 2006. Regression Models for Categorical Dependent Variables Using Stata. 2nd ed. College Station, TX: Stata Press.

