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Abstract. We introduce a new Stata command, xtpmg, for estimating nonstation-
ary heterogeneous panels in which the number of groups and number of time-series
observations are both large. Based on recent advances in the nonstationary panel
literature, xtpmg provides three alternative estimators: a traditional fixed-effects
estimator, the mean-group estimator of Pesaran and Smith (Estimating long-run
relationships from dynamic heterogeneous panels, Journal of Econometrics 68:
79–113), and the pooled mean-group estimator of Pesaran, Shin, and Smith (Es-
timating long-run relationships in dynamic heterogeneous panels, DAE Working
Papers Amalgamated Series 9721; Pooled mean group estimation of dynamic het-
erogeneous panels, Journal of the American Statistical Association 94: 621–634).

Keywords: st0125, xtpmg, nonstationary panels, heterogeneous dynamic panels,
pooled mean-group estimator, mean-group estimator, panel cointegration

1 Introduction

In recent years, the dynamic panel-data literature has begun to focus on panels in
which the number of cross-sectional observations (N) and the number of time-series
observations (T ) are both large. The availability of data with greater frequency is
certainly a key contributor to this shift. Some cross-national and cross-state datasets,
for example, are now large enough in T such that each nation (or state) can be estimated
separately.

The asymptotics of large N , large T dynamic panels are different from the asymp-
totics of traditional large N , small T dynamic panels. Small T panel estimation usu-
ally relies on fixed- or random-effects estimators, or a combination of fixed-effects es-
timators and instrumental-variable estimators, such as the Arellano and Bond (1991)
generalized method-of-moments estimator. These methods require pooling individual
groups and allowing only the intercepts to differ across the groups. One of the cen-
tral findings from the large N , large T literature, however, is that the assumption of
homogeneity of slope parameters is often inappropriate. This point has been made
by Pesaran and Smith (1995); Im, Pesaran, and Shin (2003); Pesaran, Shin, and Smith
(1997, 1999); and Phillips and Moon (2000).1

1. For more discussion of this literature, see chapter 12 in Baltagi (2001).

c© 2007 StataCorp LP st0125



198 Estimation of nonstationary heterogeneous panels

With the increase in time observations inherent in large N , large T dynamic panels,
nonstationarity is also a concern. Recent papers by Pesaran, Shin, and Smith (1997,
1999) offer two important new techniques to estimate nonstationary dynamic panels in
which the parameters are heterogeneous across groups: the mean-group (MG) and pooled
mean-group (PMG) estimators. The MG estimator (see Pesaran and Smith 1995) relies
on estimating N time-series regressions and averaging the coefficients, whereas the PMG

estimator (see Pesaran, Shin, and Smith 1997, 1999) relies on a combination of pooling
and averaging of coefficients.

In recent empirical research, the MG and PMG estimators have been applied in a
variety of settings. Freeman (2000), for example, uses the estimators to evaluate state-
level alcohol consumption over 1961–1995. Martinez-Zarzoso and Bengochea-Morancho
(2004) use them in an estimation of an environmental Kuznets curve in a panel of
22 OECD nations over 1975–1998. Frank (2005) uses the MG and PMG estimators to
evaluate the long-term effect of income inequality on economic growth in a panel of U.S.
states over 1945–2001.

2 The MG and PMG estimators

Assume an autoregressive distributive lag (ARDL) (p, q1, . . . , qk) dynamic panel specifi-
cation of the form

yit =

p∑

j=1

λijyi,t−j +

q∑

j=0

δ
′

ijXi,t−j + µi + εit (1)

where the number of groups i = 1, 2, . . . , N ; the number of periods t = 1, 2, . . . , T ; Xit

is a k × 1 vector of explanatory variables; δit are the k × 1 coefficient vectors; λij are
scalars; and µi is the group-specific effect. T must be large enough such that the model
can be fitted for each group separately. Time trends and other fixed regressors may be
included.

If the variables in (1) are, for example, I(1) and cointegrated, then the error term
is an I(0) process for all i. A principal feature of cointegrated variables is their re-
sponsiveness to any deviation from long-run equilibrium. This feature implies an error
correction model in which the short-run dynamics of the variables in the system are
influenced by the deviation from equilibrium. Thus it is common to reparameterize (1)
into the error correction equation

∆yit = φi(yi,t−1 − θ
′

iXit) +

p−1∑

j=1

λ∗
ij∆yi,t−1 +

q−1∑

j=0

δ
′∗
ij ∆Xi,t−j + µi + εit (2)

where φi = −(1 −
∑p

j=1 λij), θi =
∑q

j=0 δij/(1 −
∑

k λik), λ∗
ij = −

∑p
m=j+1 λim j =

1, 2, . . . , p − 1, and δ∗ij = −
∑q

m=j+1 δim j = 1, 2, . . . , q − 1.

The parameter φi is the error-correcting speed of adjustment term. If φi = 0, then
there would be no evidence for a long-run relationship. This parameter is expected to
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be significantly negative under the prior assumption that the variables show a return
to a long-run equilibrium. Of particular importance is the vector θ

′

i, which contains the
long-run relationships between the variables.

The recent literature on dynamic heterogeneous panel estimation in which both N
and T are large suggests several approaches to the estimation of (2). On one extreme,
a fixed-effects (FE) estimation approach could be used in which the time-series data for
each group are pooled and only the intercepts are allowed to differ across groups. If
the slope coefficients are in fact not identical, however, then the FE approach produces
inconsistent and potentially misleading results. On the other extreme, the model could
be fitted separately for each group, and a simple arithmetic average of the coefficients
could be calculated. This is the MG estimator proposed by Pesaran and Smith (1995).
With this estimator, the intercepts, slope coefficients, and error variances are all allowed
to differ across groups.

More recently, Pesaran, Shin, and Smith (1997, 1999) have proposed a PMG estima-
tor that combines both pooling and averaging. This intermediate estimator allows the
intercept, short-run coefficients, and error variances to differ across the groups (as would
the MG estimator) but constrains the long-run coefficients to be equal across groups (as
would the FE estimator). Since (2) is nonlinear in the parameters, Pesaran, Shin, and
Smith (1999) develop a maximum likelihood method to estimate the parameters.

Expressing the likelihood as the product of each cross-section’s likelihood and taking
the log yields

lT (θ
′

, ϕ
′

, σ
′

) = −
T

2

N∑

i=1

ln(2πσ2
i ) −

1

2

N∑

i=1

1

σ2
i

{∆yi − φiξi(θ)}
′Hi{∆yi − φiξi(θ)} (3)

for i = 1, . . . , N , where ξi(θ) = yi,t−1 −Xiθi, Hi = IT −Wi(W
′
iWi)Wi, IT is an identity

matrix of order T , and Wi = (∆yi,t−1, . . . ,∆yi,t−p+1,∆Xi,∆Xi,t−1, . . . ,∆Xi,t−q+1).

xtpmg uses Stata’s powerful ml framework to implement the PMG estimator. Specif-
ically, we take advantage of the undocumented hold option of ml to maximize the
likelihood via “back-substitution”.2 Beginning with an initial estimate of the long-run
coefficient vector, θ̂, the short-run coefficients and the group-specific speed of adjustment
terms can be estimated by regressions of ∆yi on (ξ̂i,Wi). These conditional estimates
are in turn used to update the estimate of θ. The process is iterated until convergence
is achieved.

The parameter estimates from iterated conditional likelihood maximization are as-
ymptotically identical to those from full-information maximum likelihood. But the
estimated covariance matrix is not. However, since the distribution of the PMG param-
eters is known, we can recover the full covariance matrix for all estimated parameters.
As shown in Pesaran, Shin, and Smith (1999), the covariance matrix can be estimated
by the inverse of

2. Although (3) looks benign, the model is difficult to program directly as a Stata ml program.
Looking forward to (8), readers will note that the model cannot be readily adapted to ml’s familiar
“theta” notation.
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The MG parameters are simply the unweighted means of the individual coefficients.
For example, the MG estimate of the error correction coefficient, φ, is

φ̂ = N−1
N∑

i=1

φ̂i (4)

with the variance

∆̂bφ =
1

N(N − 1)

N∑

i=1

(φ̂i − φ̂)2 (5)

The mean and variance of other short-run coefficients are similarly estimated.

3 The xtpmg command

3.1 Syntax

xtpmg varlist
[
if

] [
in

] [
, lr(varlist) ec(string) replace constraints(string)

noconstant cluster(varname) level(#) technique(algorithm spec)

difficult full model
]

3.2 Options

lr(varlist) specifies the variables to be included when calculating the long-run cointe-
grating vector.

ec(string) is used to specify the name of the newly created error-correction term; default
is ec.

replace overwrites the error-correction variable, if it exists.

constraints(string) specifies the constraints to be applied to the model. This option
is currently used only with option pmg.
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noconstant suppresses the constant term. This option cannot be used with option dfe.

cluster(varname) specifies that the observations are independent across groups (clus-
ters), but not necessarily within groups. varname specifies to which group each
observation belongs, e.g., cluster(personid) in data with repeated observations
on individuals. cluster() affects the estimated standard errors and variance–
covariance matrix of the estimators (VCE), but not the estimated coefficients; see
[U] 20.14 Obtaining robust variance estimates.

level(#) sets the confidence level; default is level(95).

technique(algorithm spec) specifies the ml maximization technique. algorithm spec is
algorithm

[
#

[
algorithm

[
#

] ]
. . .

]
, where algorithm is

{
nr | bfgs | dfp

}
. The

bhhh algorithm is not compatible with xtpmg. technique() can be used only with
option pmg.

difficult will use a different stepping algorithm in nonconcave regions of the likelihood.

full specifies that all N cross-section regression results be listed. Only the averaged
coefficients are listed by default.

model is the type of estimator to be fitted and is one of the following:

pmg is the default and specifies the PMG estimator. This model constrains the long-
run coefficient vector to be equal across panels while allowing for group-specific
short-run and adjustment coefficients.

mg specifies the MG estimator. This model fits parameters as averages of the N

individual group regressions.

dfe specifies the dynamic fixed-effects estimator.

4 Empirical example: OECD consumption

4.1 Data

We illustrate the use of xtpmg with annual aggregate consumption data for 24 Organisa-
tion for Economic Co-operation and Development (OECD) nations. These data are taken
from Pesaran, Shin, and Smith (1997, 1999) and encompass the years 1960–1993.3 The
1993 annual observation for Belgium is not included in the estimation sample, leaving
an estimation period of 1962–1992 for Belgium and 1962–1993 for the other 23 OECD

countries. xtpmg requires that the data be tsset before estimation.

. use jasa2

. tsset id year
panel variable: id (unbalanced)
time variable: year, 1960 to 1993

3. The original data and GAUSS code are available on Pesaran’s web site:
http://www.econ.cam.ac.uk/faculty/pesaran.
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Assume the long-run consumption function

cit = θ0t + θ1tyit + θ2tπit + µi + εit (6)

where the number of nations i = 1, 2, . . . , N ; the number of periods t = 1, 2, . . . , T ; cit

is the log of real per capita consumption; yit is the log of real per capita income; and
πit is the inflation rate. If the variables are I(1) and cointegrated, then the error term
is I(0) for all i. The ARDL(1,1,1) dynamic panel specification of (6) is

cit = δ10iyit + δ11iyi,t−1 + δ20iπit + δ21iπi,t−1 + λici,t−1µi + εit (7)

The error correction reparameterization of (7) is

∆cit = φi (ci,t−1 − θ0i − θ1iyit − θ2iπit) + δ11i∆yit + δ21i∆πit + εit (8)

where φi = −(1 − λi), θ0i = µi

1−λi
, θit = δ10i+δ11i

1−λi
, and θ2i = δ20i+δ21i

1−λi
.

The error-correction speed of adjustment parameter, φi, and the long-run coeffi-
cients, θ1i and θ2i, are of primary interest. With the inclusion of θ0i, a nonzero mean
of the cointegrating relationship is allowed. One would expect φi to be negative if the
variables exhibit a return to long-run equilibrium. Most aggregate consumption theories
indicate that the long-run income elasticity, θ1i, should be equal to one. The inflation
effect, θ2i, is generally thought to be negative.

4.2 PMG estimation

The first example estimates the PMG estimator for model (8). In this context, the PMG

model allows for heterogeneous short-run dynamics and common long-run income and
inflation elasticities. Often only the long-run parameters are of interest. The default
results of the pmg option include the long-run parameter estimates and the averaged
short-run parameter estimates.4

4. The PMG standard errors match the GAUSS output provided by Pesaran, Shin, and Smith (1999).
The standard errors in table 1 of Pesaran, Shin, and Smith (1999) are, however, different from those
reported here and from the original GAUSS program.
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. xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) replace pmg

Iteration 0: log likelihood = 2270.3017 (not concave)
Iteration 1: log likelihood = 2319.1636
Iteration 2: log likelihood = 2322.9301
Iteration 3: log likelihood = 2326.7546
Iteration 4: log likelihood = 2327.0742
Iteration 5: log likelihood = 2327.0749
Iteration 6: log likelihood = 2327.0749

Pooled Mean Group Regression
(Estimate results saved as pmg)

Panel Variable (i): id Number of obs = 767
Time Variable (t): year Number of groups = 24

Obs per group: min = 31
avg = 32.0
max = 32

Log Likelihood = 2327.075

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ec
pi -.4658438 .0567332 -8.21 0.000 -.5770388 -.3546487
y .9044336 .0086815 104.18 0.000 .8874181 .9214491

SR
ec -.1998761 .0321683 -6.21 0.000 -.2629247 -.1368275
pi
D1. -.0182588 .0277523 -0.66 0.511 -.0726522 .0361347

y
D1. .3269355 .0574236 5.69 0.000 .2143873 .4394838

_cons .1544507 .0216943 7.12 0.000 .1119308 .1969707

In the output, the estimated long-run inflation elasticity is significantly negative, as
expected. Also, the estimated income elasticity is significantly positive. Theoretically,
the income elasticity is equal to one. This hypothesis is easily tested:

. test [ec]y=1

( 1) [ec]y = 1

chi2( 1) = 121.18
Prob > chi2 = 0.0000

The corresponding χ2 value of 121.2 leads to rejection of the null hypothesis of unit
income elasticity.

The full option estimates and saves an N + 1 multiple-equation model. The first
equation (labeled per option ec) presents the normalized cointegrating vector.5 The
remaining N equations list the group-specific short-run coefficients.

5. The vector has been normalized such that the coefficient on the first term in the cointegrating
vector is 1. Accordingly, the normalized term is omitted from the estimation output.
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. xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) full pmg

Iteration 0: log likelihood = 2270.3017 (not concave)
Iteration 1: log likelihood = 2319.1636
Iteration 2: log likelihood = 2322.9301
Iteration 3: log likelihood = 2326.7546
Iteration 4: log likelihood = 2327.0742
Iteration 5: log likelihood = 2327.0749
Iteration 6: log likelihood = 2327.0749

Pooled Mean Group Regression
(Estimate results saved as PMG)

Panel Variable (i): id Number of obs = 767
Time Variable (t): year Number of groups = 24

Obs per group: min = 31
avg = 32.0
max = 32

Log Likelihood = 2327.075

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ec
pi -.4658438 .0567332 -8.21 0.000 -.5770388 -.3546487
y .9044336 .0086815 104.18 0.000 .8874181 .9214491

id_111
ec -.0378815 .0240594 -1.57 0.115 -.0850371 .0092742
pi
D1. -.2114431 .0866913 -2.44 0.015 -.3813548 -.0415314

y
D1. .5195067 .055876 9.30 0.000 .4099918 .6290217

_cons .0336383 .0147912 2.27 0.023 .0046481 .0626285

(output omitted )

id_196
ec -.4978606 .0887771 -5.61 0.000 -.6718605 -.3238608
pi
D1. .0721044 .0721146 1.00 0.317 -.0692375 .2134464

y
D1. .0390557 .103316 0.38 0.705 -.16344 .2415515

_cons .2743539 .0630399 4.35 0.000 .1507979 .3979099

Since each group has its own estimated equation, we can, for example, predict vari-
ables intuitively.

. predict dc111 if id==111, eq(id_111)
(783 missing values generated)

Similarly, cross-equation restrictions are easily applied.

. test [id_111]ec=[id_112]ec=0

( 1) [id_111]ec - [id_112]ec = 0
( 2) [id_111]ec = 0

chi2( 2) = 2.54
Prob > chi2 = 0.2814
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4.3 MG estimation

The MG estimates are the unweighted mean of the N individual regression coefficients.
xtpmg with the mg option loops through all panels in the sample to estimate the param-
eters of (8).6

. xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) replace mg

Mean Group Estimation: Error Correction Form
(Estimate results saved as mg)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ec
pi -.3529095 .1168025 -3.02 0.003 -.5818381 -.1239809
y .9181344 .0272673 33.67 0.000 .8646914 .9715774

SR
ec -.3063473 .0301599 -10.16 0.000 -.3654597 -.2472349
pi
D1. -.0253642 .0294774 -0.86 0.390 -.0831389 .0324104

y
D1. .2337588 .0489502 4.78 0.000 .1378182 .3296994

_cons .2082185 .1089385 1.91 0.056 -.005297 .4217339

The MG estimates are presented as a two-equation model: the normalized cointe-
grating vector and the short-run dynamic coefficients. In comparing the PMG and MG

estimators, we note that the estimated long-run income and inflation elasticities are
statistically significant and properly signed in both models. However, the PMG esti-
mate of the inflation elasticity is larger in magnitude than the estimate from the MG

model (−.47 and −.35, respectively). The opposite is true for the estimated long-run
income elasticity (.90 and .92, respectively). The speed of adjustment estimates from

each model imply significantly different short-run dynamics (compare φ̂ = −.20 from

PMG and φ̂ = −.31 from MG).

Recall that the PMG estimator constrains the long-run elasticities to be equal across
all panels. This “pooling” across countries yields efficient and consistent estimates when
the restrictions are true. Often, however, the hypothesis of slope homogeneity is rejected
empirically. If the true model is heterogeneous, the PMG estimates are inconsistent; the
MG estimates are consistent in either case. The test of difference in these models is
performed with the familiar Hausman test.7

6. Actually, since (8) is nonlinear in the parameters, xtpmg estimates the reduced-form regressions for
each group, ∆ct = φct−1 + β1yt + β2πt + γ1∆yt + γ2∆πt, and then applies Stata’s nlcom command to
recover the underlying parameter estimates.

7. Stata’s hausman test offers a sigmamore option. This option forces the variance–covariance matrix
from the efficient model (PMG here) to be used in calculating the test statistic. This is what is presented
here. See Baum, Schaffer, and Stillman (2003) for more details.
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. hausman mg pmg, sigmamore

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
mg pmg Difference S.E.

pi -.3529095 -.4658438 .1129342 .126218
y .9181344 .9044336 .0137008 .0311167

b = consistent under Ho and Ha; obtained from xtpmg
B = inconsistent under Ha, efficient under Ho; obtained from xtpmg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 1.06

Prob>chi2 = 0.5887

The calculated Hausman statistic is 1.06 and is distributed χ2(2). Here we conclude
that the PMG estimator, the efficient estimator under the null hypothesis, is preferred.

4.4 Dynamic FE

The dynamic FE estimator, like the PMG estimator, restricts the coefficients of the coin-
tegrating vector to be equal across all panels. The FE model further restricts the speed
of adjustment coefficient and the short-run coefficients to be equal. xtpmg with the dfe

option fits the model in (8) while allowing panel-specific intercepts.8 An allowance for
intragroup correlation in the calculation of standard errors is made with the cluster()
option.

. xtpmg d.c d.pi d.y if year>=1962, lr(l.c pi y) ec(ec) replace dfe cluster(id)

Standard errors adjusted with cluster(id) option.

Dynamic Fixed Effects Regression: Estimated Error Correction Form
(Estimate results saved as DFE)

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ec
pi -.266343 .102506 -2.60 0.009 -.4672509 -.065435
y .9120574 .0468008 19.49 0.000 .8203295 1.003785

SR
ec -.1794146 .0434584 -4.13 0.000 -.2645915 -.0942378
pi
D1. -.0280826 .0325622 -0.86 0.388 -.0919034 .0357382

y
D1. .3811944 .070876 5.38 0.000 .24228 .5201089

_cons .1257634 .0805454 1.56 0.118 -.0321025 .2836294

8. For the FE model, xtpmg is simply a wrapper for Stata’s xtreg, fe command (see [XT] xtreg).
The underlying parameters of (8) are calculated with nlcom and stored as EC. The reduced-form model,
as estimated by xtreg, fe, is stored as DFE.
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All coefficients from the dynamic FE model are properly signed and, in fact, similar
to the PMG and MG estimates. As discussed in Baltagi, Griffin, and Xiong (2000),
FE models are subject to a simultaneous equation bias from the endogeneity between
the error term and the lagged dependent variable. The Hausman test can be easily
performed to measure the extent of this endogeneity.

. hausman mg DFE, sigmamore

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
mg DFE Difference S.E.

pi -.3529095 -.266343 -.0865666 25.80672
y .9181344 .9120574 .0060771 6.024402

b = consistent under Ho and Ha; obtained from xtpmg
B = inconsistent under Ha, efficient under Ho; obtained from xtpmg

Test: Ho: difference in coefficients not systematic

chi2(2) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 0.00

Prob>chi2 = 1.0000

Results indicate that the simultaneous equation bias is minimal for these data and, for
this example, we conclude that the FE model is preferred over the MG model.

5 Conclusion

This paper follows recent advances offered by Pesaran and Smith (1995) and Pesaran,
Shin, and Smith (1997; 1999) in the estimation of nonstationary heterogeneous panels
with large N and large T . We offer a new Stata command, xtpmg, that estimates
three alternative models: a traditional dynamic FE estimator that relies on pooling of
cross-sections, an MG estimator that relies on averaging of cross-sections, and a PMG

estimator that relies on a combination of pooling and averaging of coefficients.
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