The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository papers that link the use of Stata commands or programs to associated principles, such as those that will serve as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go “beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could be of interest or usefulness to researchers, especially in fields that are of practical importance but are not often included in texts or other journals, such as the use of Stata in managing datasets, especially large datasets, with advice from hard-won experience; and 6) papers of interest to those teaching, including Stata with topics such as extended examples of techniques and interpretation of results, simulations of statistical concepts, and overviews of subject areas.

For more information on the Stata Journal, including information for authors, see the web page

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone 979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates:

Subscriptions mailed to US and Canadian addresses:

- 3-year subscription (includes printed and electronic copy) $153
- 2-year subscription (includes printed and electronic copy) $110
- 1-year subscription (includes printed and electronic copy) $ 59
- 1-year student subscription (includes printed and electronic copy) $ 35

Subscriptions mailed to other countries:

- 3-year subscription (includes printed and electronic copy) $225
- 2-year subscription (includes printed and electronic copy) $158
- 1-year subscription (includes printed and electronic copy) $ 83
- 1-year student subscription (includes printed and electronic copy) $ 59
- 3-year subscription (electronic only) $153

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sj.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station TX 77845, USA, or email sj@stata.com.
Exploratory analysis of single nucleotide polymorphism (SNP) for quantitative traits

Mario A. Cleves
UAMS College of Medicine, Department of Pediatrics
11219 Financial Centre Parkway, Suite 250, Little Rock, AR 72211
ClevesMarioA@uams.edu

Abstract. With the decreasing cost and the increasing ability to quickly genotype single nucleotide polymorphisms (SNP) across the human genome, large databases containing possibly hundreds of typed SNPs are becoming common in population-based studies of quantitative traits. Testing for association between individual SNPs and the quantitative trait is an important first step in the discovery of disease susceptibility SNPs. This task, however, could be time-consuming and tedious if a large number of SNPs is involved. In this article, I introduce two new commands designed to facilitate the screening and testing of multiple SNPs for possible association with quantitative traits.

Keywords: st0083, hwsnp, qtlsnp, genetic epidemiology, genetic linkage, QTL, biallelic marker, single nucleotide polymorphisms, Hardy–Weinberg

1 Introduction

Many phenotypes of medical importance can be measured quantitatively. Even qualitative diseases, such as diabetes and essential hypertension, result from variation in an underlying quantitative trait. In the last few years, there has been an increase in population-based studies that aim to identify genomic regions and subsequent genetic variants associated with many common diseases. This effort may begin a genome-wide or region-wide search for association using large numbers of single nucleotide polymorphisms (SNP), resulting in the creation of large databases with possibly hundreds of genotyped SNPs and possibly tens of quantitative traits to be examined.

The initial evaluation of these SNPs can be tedious and time-consuming. This motivated me to write two new Stata commands to facilitate rapid SNP screening: the hwsnp command, which tests SNPs for Hardy–Weinberg equilibrium, and the qtlsnp command, which uses Stata’s regression commands and options to facilitate the rapid evaluation of multiple SNPs for possible association with a quantitative trait. Note that although the focus of this command and article is on SNP analysis, these commands work equally well for other biallelic markers.
Exploratory SNP analysis for quantitative traits

2 The hwsnp command

hwsnp succinctly reports the results of Hardy–Weinberg equilibrium tests performed on each of multiple SNPs. hwsnp calls genhw and reports results from both asymptotic and exact Hardy–Weinberg (HW) equilibrium tests. Note that genhw must be installed in order for this command to work (Cleves 1999). If it is not installed, simply type in Stata findit genhw and follow the instructions to install genhw.

2.1 Syntax

hwsnp SNPlist if exp in range , separator(string) outfile(filename) replace

by . . . : may be used with hwsnp; see [R] by ([D] by in Stata 9).

SNPlist may contain one or more SNPs.

hwsnp expects the data to be in wide form—each observation representing one subject. If the data are in long form (i.e., multiple observations per subject), reshape may be used to transform it to wide form; see [R] reshape ([D] reshape in Stata 9).

hwsnp expects each SNP in SNPlist to be of length = 2, where the first character (or digit) is the first allele of an individual’s genotype at the SNP locus and the second character or digit is the second allele of that individual’s genotype at the SNP locus (example of valid genotypes: ct, tt, 12, 22). See the separator() option if your data are coded differently.

2.2 Options

separator(string) is used to inform hwsnp how the SNPs are coded. By default, each SNP in SNPlist is assumed to be of length = 2, where the first character (or digit) is the first allele of an individual’s genotype at the SNP locus and the second character or digit is the second allele of that individual’s genotype at the SNP locus. separator() modifies this by indicating the characters used to separate alleles in the genotype. For example, if the genotype is coded as THR/SER, specify separator("/").

outfile(filename) saves in filename.dta for resuls for each SNP.

replace replaces an existing output file.

2.3 Example

In a recent study of individuals with congestive heart disease (CHD), we genotyped 143 CHD patients at 114 SNPs in genomic areas believed to harbor genes important in lipid metabolism. A fairly comprehensive fasting lipid profile was performed on each
M. A. Cleves

patient, which included these four common lipid measurements: triglycerides (trig), total cholesterol (totalchol), LDL cholesterol (ldl), and HDL cholesterol (hdl).

Following is a list of the first ten observations and eight variables in the dataset:

```
use lipids, clear
list PatientID trig totalchol ldl hdl SNP1 SNP2 SNP114 in 1/10

1. 11107 211 228 156 30 AA CC TT
2. 11115 176 217 147 35 AA AA TT
3. 11120 69 194 135 45 AA CC TT
4. 11135 169 189 126 29 AA AC TT
5. 11141 73 159 100 44 AA AC CC
6. 11145 462 216 107 24 AA AC CC
7. 11149 462 216 107 24 AA AC CC
8. 11150 462 216 107 24 AA AC CC
9. 11155 74 129 81 33 AA AC CT
10. 11156 238 237 156 33 AA AA TT
```

Note that the dataset is in the wide form, containing one observation per patient, as defined by `PatientID`. Because of space limitations, we only listed three of the 114 SNPs. Although in this dataset the SNPs are string variables, numeric SNP variables are also valid.

We now test SNP1 to SNP9 for Hardy–Weinberg equilibrium using `hwsnp`.

```
hwsnp SNP1-SNP9

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Pearson chi2</th>
<th>P-value</th>
<th>LR chi2</th>
<th>P-value</th>
<th>Exact Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP 1</td>
<td>98.695</td>
<td>0.0000</td>
<td>55.297</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>SNP 2</td>
<td>0.373</td>
<td>0.5415</td>
<td>0.373</td>
<td>0.5416</td>
<td>0.6110</td>
</tr>
<tr>
<td>SNP 3</td>
<td>47.607</td>
<td>0.0000</td>
<td>59.514</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>SNP 4</td>
<td>2.725</td>
<td>0.0988</td>
<td>2.446</td>
<td>0.1178</td>
<td>0.1331</td>
</tr>
<tr>
<td>SNP 5</td>
<td>1.003</td>
<td>0.3166</td>
<td>1.000</td>
<td>0.3173</td>
<td>0.3026</td>
</tr>
<tr>
<td>SNP 6</td>
<td>0.960</td>
<td>0.3271</td>
<td>0.930</td>
<td>0.3348</td>
<td>0.3686</td>
</tr>
<tr>
<td>SNP 7</td>
<td>19.003</td>
<td>0.0000</td>
<td>19.381</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>SNP 8</td>
<td>1.440</td>
<td>0.2301</td>
<td>1.407</td>
<td>0.2356</td>
<td>0.2271</td>
</tr>
<tr>
<td>SNP 9</td>
<td>0.039</td>
<td>0.8426</td>
<td>0.040</td>
<td>0.8424</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```

`hwsnp` tests the null hypothesis that the SNP is in Hardy–Weinberg equilibrium. It reports Pearson’s and the likelihood-ratio chi-squared statistics, as well as the exact significance probability. See Cleves (1999) for details about these tests.
Note that adjustments for multiple comparisons are not being made or reported but may need to be accounted for in the final analysis.

3 The qtlsnp command

qtlsnp displays summary results for SNP analysis of quantitative traits. It succinctly reports on multiple SNPs and trait variables. Optionally, qtlsnp reports details for each SNP analyzed.

By default, qtlsnp uses linear regression to compare the equality of means across genotypes, while allowing for covariate adjustment. By specifying the median option, qtlsnp uses median regression instead of linear regression (see [R] qreg), and by specifying bs, qtlsnp uses median regression with bootstrapped VCE (see bsqreg in [R] qreg).

By default, qtlsnp assumes a codominant genetic model and tests for additive and dominant effects, as well as testing that both effects are equal to zero. (This comparison is equivalent to comparing means across the three possible genotypes.)

Optionally, by specifying the dominant or recessive option, qtlsnp will assume a dominant or recessive genetic model of inheritance, respectively. For example, if the three possible genotypes at a given SNP are cc, ct, and tt, the dominant option directs qtlsnp to combine the cc and ct genotypes and compare the quantitative mean trait value for these combined genotypes against the mean of the tt genotype. The recessive option combines the ct and tt genotypes, and qtlsnp compares the quantitative mean trait value for these combined genotypes with the mean of the cc genotype. Note that the terms dominant and recessive as used here are arbitrary labels used only to group genotypes.

3.1 Syntax

qtlsnp SNPlist [if exp] [in range], traitvars(varlist) [siglev(#) sumlev(#)] class(varlist) cont(varlist) dominant recessive detail brief nosummary means median bs robust rreg noasterisks graph rotate outfile(filename[, replace]) effect(additive|dominant|both) overall twoway_options

by . . . : may be used with qtlsnp; see [R] by ([D] by in Stata 9).

SNPlist may contain one or more SNPs.

qtlsnp expects the data to be in wide form—each observation representing one subject. If the data are in long form (i.e., multiple observations per subject), reshape may be used to transform the data to wide form; see [R] reshape ([D] reshape in Stata 9).
qtlsnp expects each SNP in *SNPlist* to have a maximum of three and a minimum of two distinct genotypes in the data. This implies that the heterozygous genotype should be coded consistently for each SNP. For example, for a SNP with alleles C and T, we could code the heterozygous genotype as either CT or TC, but not both. Note that the SNPs in *SNPlist* can be either string or numeric. Examples of valid genotypes include ct, t/t, 12, 2-2, and THR/SER.

3.2 Options

traitvars(*varlist*) supplies names of the quantitative trait variables. At least one trait variable must be specified. Only one trait variable is allowed when **graph** or **outfile()** is specified.

siglev(#) and sumlev(#) are used to specify the significance probability used for reporting results. If neither option is specified, all results are summarized. If **sumlev()** is specified, only SNPs significant at $p \leq \text{sumlev()}$ will be reported. If only **siglev()** is specified, all SNPs will be summarized, but only SNPs significant at $p \leq \text{siglev()}$ will be detailed. If **siglev()** and **graph** are specified together, a horizontal line at $y = -\log(\text{siglev}())$ will be displayed on the plot.

class(*varlist*) supplies the names of categorical variables to be used as covariates in the analyses.

cont(*varlist*) supplies the names of continuous variables to be used as covariates in the analyses.

dominant or **recessive** specify that heterozygous are to be combined with the homozygous wild or homozygous variant during analysis. If neither option is specified, a codominant model is assumed.

detail produces a detailed report of each SNP analyzed. This option uses a distilled version of Tony Brady’s **reformat** command (type **findit reformat** in Stata).

brief is used with **detail** to suppress printing details for all covariates in the model. If **brief** is specified, only model statistics for the SNPs are reported.

nosummary is used with **detail** to suppress the printing of the summary table.

means is used with **detail** to produce tables of summary statistics by SNP genotype.

median specifies that comparisons be based on median regression instead of linear regression. This option calls Stata’s **qreg** command. See [R] **qreg** for details.

bs specifies that comparisons be based on median regression with bootstrapped VCE. See [R] **qreg** for details.

robust specifies that the Huber/White/sandwich estimator of variance be used in place of the traditional calculation.

rreg specifies that comparisons be based on robust regression instead of linear regression.
Exploratory SNP analysis for quantitative traits

noasterisks is used to suppress the printing of stars for significant probabilities.

graph produces graphical output of significance probabilities by SNP. Only one quantitative trait is allowed with the graph option.

rotate is used with graph to exchange the x- and y-axes on the plot.

outfile(filename [, replace]) saves in filename.dta the p-values for each SNP.

effect(additive | dominant | both) is used with graph. It specifies which codominant effect to plot. If effect() is not specified, all three “effects” will be plotted together.

overall specifies that only comparisons where the overall codominant effect is significant at \(p \leq \text{sumlev()} \) be outputted. This option is ignored when either dominant or recessive are specified.

twoway_options are most of the options documented in [G] twoway_options.

3.3 Background

Assume that we have a quantitative trait \(Y \) and a candidate SNP with alleles A and B. Further, assume that the population is in Hardy–Weinberg equilibrium and that the two alleles have frequencies of \(p_A \) and \(p_B = (1 - p_A) \), respectively. For this SNP, there are three possible genotypes in the population: AA, AB, and BB. Let the mean genotypic values for the three genotypes be \(\mu_1, \mu_2, \text{and } \mu_3 \), respectively, and assume that the residual variance around these means is the same for the three genotypes. Define the additive genetic effect as

\[
\alpha = 0.5(\mu_1 - \mu_3)
\]

and the dominance genetic effect as

\[
\delta = 0.5(2\mu_2 - \mu_1 - \mu_3)
\]

The additive genetic effect, \(\alpha \), is the phenotypic value midway between the two homozygotes and has the interpretation that if we were to substitute allele A for allele B in the genotype, we would expect, on average, a phenotypic value to change \(\alpha \) units. The dominance value \(\delta \) measures the extent to which the mean of the heterozygote \(AB \) deviates from the average of the two homozygotes. If \(\delta = 0 \), there is complete additivity in the trait and the value of the heterozygote \(AB \) lies half-way between the values of the two homozygotes (Lui 1997, 377–379; Falconer and Mackay 1996, chapter 8).

Cautionary Note: The additive and dominant effects are interpreted in terms of the phenotypic means of the genotype classes. If you use median regression (median option), the additive and dominant effects are not interpretable as such, and in that case, perhaps only the overall test has meaning.

It is the user’s responsibility that the regression assumptions regarding the quantitative trait be met. This may require that the trait measurement be transformed. In addition, it is recommended that the user verify the correctness of the functional form of all additional covariates included in the model. The remaining discussion assumes...
that the trait measurement is in the proper form and that all covariates are correctly specified.

3.4 Example: Examining SNPs using linear regression

Using the same dataset as in the previous example, we will now examine the 114 SNPs for possible association with the four lipid measurements.

We begin by examining for association with serum triglycerides (\texttt{trig}).

\begin{verbatim}
. qtlsnp SNP1-SNP114, trait(trig) sumlev(0.05)
Genetic model: Codominant
\end{verbatim}

\begin{table}[h]
\begin{tabular}{lcccccc}
\hline
\textbf{Trait} & \textbf{SNP} & \textbf{N} & \textbf{F} & \textbf{Prob>F} & \textbf{F} & \textbf{Prob>F} \\
\hline
trig & SNP13 & 143 & 2.61 & 0.108 & 4.43 & 0.037** & 2.25 & 0.109 \\
 & SNP32 & 143 & 4.30 & 0.040** & 0.11 & 0.736 & 2.41 & 0.093* \\
 & SNP39 & 143 & 0.34 & 0.560 & 5.23 & 0.024** & 2.62 & 0.076* \\
 & SNP48 & 143 & 13.12 & 0.000** & 16.90 & 0.000*** & 8.52 & 0.000*** \\
 & SNP96 & 143 & 4.82 & 0.030** & 6.65 & 0.011** & 3.38 & 0.037** \\
 & SNP99 & 142 & 6.56 & 0.011** & 1.48 & 0.225 & 4.02 & 0.020** \\
\hline
\end{tabular}
\end{table}

*<=0.1, **<=0.05, ***<=0.001

By default, \texttt{qtlsnp} will assume a codominant genetic model and will fit a linear model after generating the appropriate indicator variables to test for additive and dominant genetic effects. Because we specified \texttt{sumlev(0.05)}, only those SNPs with at least one significant effect with $p \leq 0.05$ are summarized. In this case, only 6 of the 114 SNPs met this criterion.

(Continued on next page)
SNP48 looks particularly interesting. We can examine this SNP in more detail:

```
    . qtlsnp SNP48, trait(trig) detail means nosummary
Genetic model: Codominant
SNP: SNP48 Quantitative trait: trig
    Genetic model: Codominant
        Summary of Triglycerides
               Mean      Std. Dev.     Freq.
        SNP  48
            AA  131.26531  81.554302  98
            AG   107.5  57.497508   42
            GG  299.33333 220.01439    3
            Total 127.81119  83.255499 143
Model: Linear regression Number of obs = 143
        N  Coef.  Std. Err.   P>|t|   [95% Conf. Interval]
        Additive effect  143  84.0340  23.2017  0.000  38.1630  129.9051
        Dominant effect  143 -107.7993  26.2213  0.000 -159.6402 -55.9584
        Constant  143  215.2993  23.2017  0.000  169.4283  261.1704
```

The first table in the output results from specifying the `means` option. It uses `tabulate, sum()` to summarize triglycerides stratified by genotype. The second table of the output summarizes the results from the regression model. Although this SNP looks like it could be related to the trait either directly or through linkage with the trait locus, we need to be cautious about this result. From the first table, we can see that there are only three homozygous GG individuals in the sample and that the mean level for the heterozygous is less than either of the homozygous individuals. These findings cast doubt on the reliability of the results originally observed.

In the above example, we specified the `nosummary` option to suppress outputting the default summary table.

The additive and dominance parameters of the quantitative genetic model, α and δ from (1) and (2), can be computed from the means reported in the summary table above. Thus the additive parameter is estimated as

$$\alpha = 0.5(\mu_1 - \mu_3) = 0.5 \times (131.27 - 299.33) = -84.03$$

and the dominance parameter is estimated as

$$\delta = 0.5(2\mu_2 - \mu_1 - \mu_3) = 0.5 \times (2 \times 107.5 - 131.27 - 299.33) = -107.8$$

Let's now examine each SNP for association with each of the remaining three lipid measurements. We can do this in one command. To reduce the amount of output, we will specify `sumlev(0.01)`. That is, we ask `qtlsnp` to only report those SNPs with p-values less than or equal to 0.01.
Thus far, we have assumed a codominant genetic model; alternatively, we can ask *qtlsnp* to assume either a recessive or a dominant genetic model. This is done by specifying the *recessive* or *dominant* option. We now do this and include all the SNPs and lipid measurements simultaneously in the same command. Again to cut down on the amount of output, we will specify *sumlev(0.01)*. We will also specify the option *noasterisk* to suppress printing the asterisk in the output table.

```plaintext
. qtlsnp SNP1-SNP114, trait(totalchol ldl hdl) sumlev(0.01) recessive > noasterisks
Genetic model: Recessive

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob&gt;F</th>
<th>F</th>
<th>Prob&gt;F</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>totalchol</td>
<td>SNP6</td>
<td>143</td>
<td>1.00</td>
<td>0.320</td>
<td>7.15</td>
<td>0.008**</td>
<td>3.78</td>
<td>0.025**</td>
</tr>
<tr>
<td></td>
<td>SNP70</td>
<td>143</td>
<td>0.01</td>
<td>0.943</td>
<td>8.65</td>
<td>0.004**</td>
<td>4.38</td>
<td>0.014**</td>
</tr>
<tr>
<td></td>
<td>SNP83</td>
<td>143</td>
<td>8.09</td>
<td>0.005**</td>
<td>2.05</td>
<td>0.155</td>
<td>4.06</td>
<td>0.019**</td>
</tr>
<tr>
<td>ldl</td>
<td>SNP24</td>
<td>143</td>
<td>6.71</td>
<td>0.011**</td>
<td>1.54</td>
<td>0.216</td>
<td>4.85</td>
<td>0.009**</td>
</tr>
<tr>
<td></td>
<td>SNP63</td>
<td>142</td>
<td>8.58</td>
<td>0.004**</td>
<td>5.49</td>
<td>0.021**</td>
<td>4.38</td>
<td>0.014**</td>
</tr>
<tr>
<td>hdl</td>
<td>SNP19</td>
<td>143</td>
<td>5.92</td>
<td>0.016**</td>
<td>0.22</td>
<td>0.638</td>
<td>4.81</td>
<td>0.010**</td>
</tr>
<tr>
<td></td>
<td>SNP24</td>
<td>143</td>
<td>5.39</td>
<td>0.022**</td>
<td>0.31</td>
<td>0.580</td>
<td>6.01</td>
<td>0.003**</td>
</tr>
<tr>
<td></td>
<td>SNP28</td>
<td>142</td>
<td>8.62</td>
<td>0.004**</td>
<td>1.63</td>
<td>0.203</td>
<td>4.89</td>
<td>0.009**</td>
</tr>
<tr>
<td></td>
<td>SNP85</td>
<td>143</td>
<td>3.68</td>
<td>0.057*</td>
<td>8.07</td>
<td>0.005**</td>
<td>5.15</td>
<td>0.007**</td>
</tr>
</tbody>
</table>

* <=0.1, ** <=0.05, *** <=0.001

Thus far, we have assumed a codominant genetic model; alternatively, we can ask *qtlsnp* to assume either a recessive or a dominant genetic model. This is done by specifying the *recessive* or *dominant* option. We now do this and include all the SNPs and lipid measurements simultaneously in the same command. Again to cut down on the amount of output, we will specify *sumlev(0.01)*. We will also specify the option *noasterisk* to suppress printing the asterisk in the output table.

```plaintext
. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) recessive > noasterisks
Genetic model: Recessive

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>trig</td>
<td>SNP48</td>
<td>143</td>
<td>14.22</td>
<td>0.0002</td>
</tr>
<tr>
<td>totalchol</td>
<td>SNP25</td>
<td>142</td>
<td>7.67</td>
<td>0.0064</td>
</tr>
<tr>
<td>ldl</td>
<td>SNP63</td>
<td>142</td>
<td>8.80</td>
<td>0.0035</td>
</tr>
<tr>
<td>hdl</td>
<td>SNP19</td>
<td>143</td>
<td>8.98</td>
<td>0.0032</td>
</tr>
<tr>
<td></td>
<td>SNP24</td>
<td>143</td>
<td>9.85</td>
<td>0.0021</td>
</tr>
</tbody>
</table>
```
**Exploratory SNP analysis for quantitative traits**

```
. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) dominant
> noasterisks

Genetic model: Dominant

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>trig</td>
<td>SNP99</td>
<td>142</td>
<td>7.65</td>
<td>0.0065</td>
</tr>
<tr>
<td>totalchol</td>
<td>SNP83</td>
<td>143</td>
<td>7.25</td>
<td>0.0079</td>
</tr>
<tr>
<td>ldl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

As previously mentioned, the terms dominant and recessive are used as arbitrary labels to group genotypes. There is no a priori way to tell `qtlsnp` how to group the genotypes. However, once we have identified a SNP of interest we can use the `detail` option to examine how the genotypes were combined.

For example, we can check how the genotypes for SNP99 were combined in the above dominant model.

```
. qtlsnp SNP99, trait(trig) dominant detail noasterisks

Genetic model: Dominant

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>trig</td>
<td>SNP99</td>
<td>142</td>
<td>7.65</td>
<td>0.0065</td>
</tr>
</tbody>
</table>
```

SNP: SNP99  
Quantitative trait: trig  
Genetic model: Dominant  
Number of obs = 142

| SNP      | Coef. | Std. Err. | P>|t| | [95% Conf. Interval] |
|----------|-------|-----------|------|----------------------|
| SNP99    | 25    |           |      |                      |
| AA*      |       |           |      |                      |
| AG or GG | -49.6044 | 17.9391 | 0.006 | -85.0710 -14.1378    |
| Constant | 168.1600 | 16.2836 | 0.000 | 135.9665 200.3535    |

* Reference category

We see that the heterozygous and the homozygous GG genotypes were combined and compared with the homozygous AA genotype.

### 3.5 Example: Incorporating covariates into the models

Additional patient covariates can be included into the regression models by specifying the `cont()` or `class()` options depending on whether the covariate is measured on an
interval scale or not. In our lipid dataset, we have two patient covariates: the patient’s age and the patient’s sex.

Let’s fit our recessive model as before but include these two covariates.

```
. qtlsnp SNP1-SNP114, trait(trig totalchol ldl hdl) sumlev(0.01) recessive > cont(age) class(sex)
Genetic model: Recessive
```

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>trig</td>
<td>SNP48</td>
<td>143</td>
<td>13.26</td>
<td>0.0004***</td>
</tr>
<tr>
<td>totalchol</td>
<td>SNP63</td>
<td>142</td>
<td>8.16</td>
<td>0.0049**</td>
</tr>
<tr>
<td>ldl</td>
<td>SNP19</td>
<td>143</td>
<td>9.49</td>
<td>0.0025**</td>
</tr>
<tr>
<td>hdl</td>
<td>SNP24</td>
<td>143</td>
<td>9.30</td>
<td>0.0027**</td>
</tr>
</tbody>
</table>

*<=0.1, **<=0.05, ***<=0.001

We see that the same SNPs we previously identified, except for SNP25, remained significant at \( \alpha = 0.01 \) after controlling for age and sex. Let’s examine the relationship between SNP25 and total cholesterol more closely.

```
. qtlsnp SNP25, trait(totalchol) recessive cont(age) class(sex) detail
Genetic model: Recessive
```

<table>
<thead>
<tr>
<th>Trait</th>
<th>SNP</th>
<th>N</th>
<th>F</th>
<th>Prob&gt;F</th>
</tr>
</thead>
<tbody>
<tr>
<td>totalchol</td>
<td>SNP25</td>
<td>142</td>
<td>6.43</td>
<td>0.0123**</td>
</tr>
</tbody>
</table>

*<=0.1, **<=0.05, ***<=0.001

SNP: SNP25	Quantitative trait: totalchol
Model: Linear regression	Genetic model: Recessive
Number of obs = 142	

| N | Coef. | Std. Err. | P>|t| | [95% Conf. Interval] |
|---|-------|-----------|------|-------------------|
| SNP25 AA or AG* 49 | 16.2611 | 6.4123 | 0.012 | 3.5820 | 28.9402 |
| GG  | 93 | 6.2725 | 0.298 | -18.9618 | 5.8433 |
| SEX 1*  | 88 | -6.5592 | 0.074 | -0.5537 | 0.4132 |
| 2  | 54 | 8.1055 | 0.000 | 159.4362 | 191.4901 |
| Age per unit | 142 | -0.0702 | 0.2445 | -5.8433 | 5.8433 |
| Constant  | 142 | 175.4632 | 8.1055 | 0.000 | 159.4362 | 191.4901 |

* Reference category
Exploratory SNP analysis for quantitative traits

In the first table, we see that the adjusted p-value is now 0.0123, which is why it was not shown in our previous example. In the second table, we see that both age and sex were treated as specified. When class(varlist) is specified, qtlsnp knows to generate indicator variables for each variable in varlist. Note that these two options will also allow you to incorporate interaction terms into the model, although the interaction terms must be generated beforehand.

3.6 Example: Examining SNPs using the graph option

qtlsnp’s graph option is helpful for quick examination of results. The option has the limitation that only one quantitative trait can be plotted at a time. As an example, using the lipid data, we plot the results for triglycerides, assuming a dominant model.

. qtlsnp SNP1-SNP114, trait(trig) graph dominant

Genetic model: Dominant

In this plot, the taller the line, the more significant is the SNP. By default, a horizontal reference line at $p = 0.1$ is drawn. The location of the reference line can be controlled by specifying the siglev() option.

4 Comments

The two commands hwsnp and qtlsnp were designed to facilitate the rapid screening of a large number of SNPs and quantitative traits simultaneously. The commands use existing Stata commands and, in that sense, are not new. Via its options, the qtlsnp command provides greater flexibility than that described in this article.
The `qtlsnp` command must be used with caution. Before using this command, you must be familiar with and verify the assumptions being made by the model that you are planning to estimate (e.g., normality, homoscedasticity, independence, etc.) and also be certain that you use the correct functional form of all covariates and interaction terms (i.e., do they need to be transformed to meet linearity assumption in linear regression, etc.) Additionally, be aware that the significant probabilities reported by `qtlsnp` have not been adjusted for multiple comparisons.

5 Acknowledgments

I would like to express my appreciation and acknowledge the contributions made by Dr. David C. Airey (Vanderbilt University) and Dr. Diego F. Wyszynski (Boston University) to the development of this command. This work was supported in part by Cooperative Agreement No. U50/CCU613236 from the Centers for Disease Control and Prevention (CDC), and by a grant from the National Institute of Child Health and Human Development (5R01 HD39054). The contents are solely the responsibility of the author and do not necessarily represent the official views of the CDC or NIH.

6 References


About the Author

Mario Cleves is an Associate Professor at the University of Arkansas for Medical Sciences, College of Medicine, Department of Pediatrics, and a Senior Biostatistician for the Arkansas Center for Birth Defects Research and Prevention. His current research interests focus on dissecting the genetic and environmental causes of major structural congenital malformations, particularly neural tube and congenital heart defects.