The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository papers that link the use of Stata commands or programs to associated principles, such as those that will serve as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go “beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could be of interest or usefulness to researchers, especially in fields that are of practical importance but are not often included in texts or other journals, such as the use of Stata in managing datasets, especially large datasets, with advice from hard-won experience; and 6) papers of interest to those teaching, including Stata with topics such as extended examples of techniques and interpretation of results, simulations of statistical concepts, and overviews of subject areas.

For more information on the Stata Journal, including information for authors, see the web page

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone 979-696-4600 or 800-STATAPC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates:

Subscriptions mailed to US and Canadian addresses:

3-year subscription (includes printed and electronic copy) $153
2-year subscription (includes printed and electronic copy) $110
1-year subscription (includes printed and electronic copy) $ 59
1-year student subscription (includes printed and electronic copy) $ 35

Subscriptions mailed to other countries:

3-year subscription (includes printed and electronic copy) $225
2-year subscription (includes printed and electronic copy) $158
1-year subscription (includes printed and electronic copy) $ 83
1-year student subscription (includes printed and electronic copy) $ 59
3-year subscription (electronic only) $153

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sj.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station TX 77845, USA, or email sj@stata.com.
Tabulation of multiple responses

Ben Jann
ETH Zurich, Switzerland

Abstract. Although multiple-response questions are quite common in survey research, Stata’s official release does not provide much capability for an effective analysis of multiple-response variables. For example, in a study on drug addiction an interview question might be, “Which substances did you consume during the last four weeks?” The respondents just list all the drugs they took, if any; e.g., an answer could be “cannabis, cocaine, heroin” or “ecstasy, cannabis” or “none”, etc. Usually, the responses to such questions are stored as a set of variables and, therefore, cannot be easily tabulated. I will address this issue here and present a new module to compute one- and two-way tables of multiple responses. The module supports several types of data structure, provides significance tests, and offers various options to control the computation and display of the results. In addition, tools to create graphs of multiple-response distributions are presented.

Keywords: st0082, mrtab, mrgraph, Mrsvmat, multiple responses, multiple testing, tabulate

1 Introduction

Surveys often contain questions which can have multiple responses. That is, questions are asked to which a respondent can give zero, one, or more answers. For example, such a question might be, “Which of the following devices do you have in your home?” The respondent is then given a list like “1. Television, 2. Dishwasher, 3. Computer, 4. Dry cleaner . . .” and may mark any number of devices. Furthermore, the list might be open-ended, so that the respondent can also name devices that are not listed. Thus although not necessarily so, multiple-response questions often have an explorative character.

The answers to multiple-response questions are, in fact, a series of answers and, thus, are usually stored as a series of variables. However, because the variables constitute some topical entity, the combined statistical distribution of all variables may be of interest rather than the separate distributions of the single variables. Moreover, depending on the storage structure, the distributions of the single variables may be completely meaningless if taken individually.

Because multiple-response data is spread out over several variables, it cannot be easily tabulated. First, the data structure may vary, and it may be necessary to transform the data into different structures before tabulating. In particular, a storage type in which the responses are recorded in the order they have been mentioned by the respondent is quite common, even if the ordering is not relevant. For most purposes, however, it is useful to transform such data to a storage mode in which the single variables indicate whether particular responses have been observed or not. Second, statistical information from several variables has to be combined, which is not always just
a matter of arranging separate distributions in one table. Both tasks are difficult to accomplish using standard statistical instruments that are designed for the analysis of ordinary (single-response) variables. Thus it appears that Stata’s official tools are not sufficient for an effective analysis of multiple-response data; additional instruments are needed.

In the following section, I will briefly touch on the issue of how to store the answers to multiple-response questions and then move on to the presentation of three new commands to support the analysis of multiple responses in section 3. Section 4 illustrates the capabilities and the usage of the new commands and contains some additional considerations about significance tests.

2 Approaches to storing multiple responses

The fact that the answers to multiple-response questions are typically composed of several bits of information poses difficulties for their representation in a dataset. A common way to deal with this issue is to store each part of the answer in a separate variable. Two main approaches may be distinguished: the indicator mode and the polytomous mode.

2.1 Indicator mode

Consider the following question which could have been part of a questionnaire on drug addiction:

Which of the following narcotic substances did you consume during the last four weeks?
☞ Check all that apply

☐ Cannabis
☐ Cocktail (cocaine/heroin)
☐ Heroin (alone)
☐ Cocaine (alone)
☐ Ecstasy

Obviously, it would be most straightforward to construct a set of indicator or dummy variables in this case: one variable for each drug. Basically, the example question above is just a shortcut to five separate questions in the manner of, “Did you consume cannabis during the last four weeks?” , “Did you consume a cocaine-heroin cocktail during the last four weeks?”, and so on. The data would then look like the following (1 meaning “ticked”, 0 meaning “not ticked”):
Tabulation of multiple responses

<table>
<thead>
<tr>
<th>id</th>
<th>d1_cannabis</th>
<th>d2_cocktail</th>
<th>d3_heroin</th>
<th>d4_cocaine</th>
<th>d6_ecstasy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus respondent 1 ticked “Cannabis” and “Ecstasy”, respondent 2 ticked “Cannabis”, “Cocaine (alone)” and “Ecstasy”, and so on. Respondent 5 did not tick any of the boxes.

In the remainder of this paper, I will use the term indicator mode to refer to the situation in which the data are stored as a set of indicator variables. Note that it is not crucial that the variables be dichotomous or binary. The important point is just that each item (here each drug) is represented by its own variable.

2.2 Polytomous mode

The indicator mode is particularly suitable if the list of response categories is fixed (like in the example above) and is not too long. However, multiple-response questions are often open or half-open due to their explorative nature. For example, the question on drug consumption might also have been

Which narcotic substances did you consume during the last four weeks?

..
..

or maybe

Which narcotic substances did you consume during the last four weeks?

☐ Check all that apply

☐ Cannabis
☐ Cocktail (cocaine/heroin)
☐ Heroin (alone)
☐ Cocaine (alone)
☐ Ecstasy
☐ Other substances:
..
..
The difference to the closed question in section 2.1 is that the respondent is also given the possibility of naming drugs other than the ones the researchers could think of when constructing the questionnaire. This means that (half-)open questions cannot be divided into separate questions for the different drugs; a final question summarizing the remainder is always needed (e.g., “Besides those you already mentioned, what other substances did you consume?”).

Thus the list of possible response categories is not fixed, and one would have to update the list of responses continuously while collecting the data: Each time a new drug is named, it would be added to the list and given a unique code. Because the list is not fixed, it is also not possible to set up indicator variables for all items in advance.

Furthermore, even if a complete list of possible answers is known in advance, the indicator mode could be very inefficient because of the vast number of required variables. It would be more efficient in such cases to split the multiple responses according to their “order of appearance”. Think of the answers to the above question as lists of drugs (for example, one answer is “cannabis, ecstasy”, or “cocaine, heroin, cocktail, morphine”). We would then in each case take the first token of the list and save it in a first variable, take the second token and save it in a second variable, and so on. Thus if we were applying this strategy and using string variables to store the information, the data could look like the following:

```
id    druguse1  druguse2  druguse3  druguse4
  1    cannabis  ecstasy
  2    ecstasy   cocaine  cannabis
  3    heroin    cannabis
  4    cocaine   heroin   cocktail  morphine
  5    LSD
```

A numerical representation of the same data would be, for instance,

```
id    druguse1  druguse2  druguse3  druguse4
  1    1          5          0          0
  2    5          4          1          0
  3    3          1          0          0
  4    4          3          2          6
  5    7          0          0          0
```

with the label definitions 1 “cannabis”, 2 “cocktail”, 3 “heroin”, 4 “cocaine”, 5 “ecstasy”, 6 “morphine”, 7 “LSD”, …, 0 “no further”.

Because the multiple responses are stored as a set of polytomous variables, I will call this the polytomous mode. The approach is suitable if the list of possible response categories is not clearly defined ex ante or if the list is rather long. Sometimes it is also convenient to use the polytomous mode because it reflects the way that the data have been collected. The obvious disadvantage of this approach is that the number of required variables depends on the observed maximum “length” (number of tokens) of a multiple response, which is not known in advance (unless explicitly limited in the
Tabulation of multiple responses

questionnaire). Most of the time, it is possible to make reasonable assumptions about this maximum, though.

Depending on the context, the ordering of the answers can be of substantial interest. For example, an instruction to order the drugs according to the frequency of consumption could have been included in the questionnaire. In this paper, however, I will not address the issue of ordered responses.

Of course there are other approaches to storing multiple responses besides the two that have been discussed here; e.g., composite string variables can be used or the data can be stored in long form. See Cox and Kohler (2003a,b) for an overview and advice on how to convert the data into different structures.

3 Analyzing multiple responses

Because of the complex data structure even simple descriptive analyses of multiple-response data like tabulating frequency distributions can be quite involved—especially if the data are stored according to the polytomous mode. A simple solution to the problem would be, of course, to tabulate the single variables on their own and count the frequencies together by hand. A more efficient approach is to transform the data to binary indicators (e.g., using \texttt{zb.qrm} by Eric Zbinden or \texttt{mrdum} by Lee Sieswerda, both available from the SSC Archive) and then use \texttt{tabstat} to tabulate the means of the indicator variables (see \texttt{[R] tabstat}). However, this approach is rather limited and is still a lot of work. In addition, there are quite a few details that have to be taken into account while transforming the data, and the whole process is vulnerable to mistakes.

To avoid having to figure out how to transform and analyze multiple responses over and over again, fairly general and easy-to-use commands should be available. There is, for example, the official \texttt{tabulate} command (see \texttt{[R] tabulate}) to calculate frequency distributions of ordinary variables, and there should be a basic procedure to tabulate multiple responses. In the remainder of this paper, I will thus present the results of some approaches to providing such general and user-friendly instruments.

\footnote{Of course, the technical maximum length is equal to the number of distinct items covered by the question (e.g., if someone took all drugs), unless repeated items are allowed. However, the reasonable maximum is usually much smaller than the technical maximum.}
3.1 Tables

Syntax

One-way tables
mrtab varlist [weight] [if exp] [in range] [, poly response(numlist)]
 countall include includemissing casewise title(string) width(#) abbrev noblabel nonames format(%fmt) integer sort(#) descending
generate(prefix) nofreq]

Two-way tables
mrtab varlist [weight] [if exp] [in range], by(varname) [column row cell rcolumn rcell chii2 lrchi2 mtest(method) mlrchi2 wrap one-way_options]

by . . . : may be used with mrtab; see [R] by.
fweights and aweights are allowed with mrtab; see [U] 14.1.6 weight.

Description

mrtab tabulates multiple responses which are stored as a set of variables (varlist). mrtab can handle the two data-storage modes explained above, that is, the indicator mode and the polytomous mode (see the poly option below). The multiple-response variables have to be numeric in the first case and can be numeric or string in the latter (it is not possible to mix numeric and string variables, though). Note that the response variables, if numeric, should contain integer values only. To specify how the values of the variables are to be interpreted, use the response() option (see below).

mrtab will display either a one-way table of the unconditional distribution of the responses or, if applying by(varname), a two-way table of the conditional distributions with respect to the groups defined by the values of varname. In the former case, counts, frequencies divided by the total of responses, and frequencies divided by the total of observations will be reported. In the latter case, cell counts and, optionally, column, row, or cell percentages based on totals of responses or totals of observations are displayed (see the column, row, cell, rcolumn, and rcell options).

There are various possibilities to influence the appearance of the displayed table. For example, the display formats of the cell statistics may be specified (format(), integer), and the width of the left stub of the table can be set (width()). It is also possible to influence the labeling (noblabel, nonames, name()) and to sort the response items in order of frequency (sort).

2I will use the terms “observations”, “cases”, and “respondents” interchangeably in this paper to refer to the objects which data are gathered from, that is, the basic units of analysis (typically, each unit is represented by one row in the data matrix). In contrast, the term “response” refers to the single parts of an answer to a multiple-response question (thus, for multiple-response questions, the total number of responses is typically greater than the total number of units of analysis).
Tabulation of multiple responses

An important issue in calculating relative distributions of multiple responses is the determination of the correct denominator. First, depending on the research question, one has to choose between totals of observations or totals of responses as indicated above (usually, it is proportions on the basis of observations one is interested in). Second, and perhaps less obvious, the sample of relevant observations has to be isolated depending on the nature of the data and the topic of research. The default in mrtab is to treat all observations containing at least one response as valid. This behavior can be changed to additionally accounting for cases with zero responses (see the include and includemissing options). Furthermore, one might want to consider cases with complete information only and neglect all cases with one or more missing values (see the casewise option).

mrtab also provides (limited) support for significance tests in two-way tables. On the one hand, it is possible to perform a series of separate χ^2 tests for each response item and adjust the p-values to account for simultaneous testing (see the mtest() and mlrchi2 options). On the other hand, overall χ^2 tests are available (chi2 and lrchi2).

Irrespective of the data structure of the original variables, mrtab always transforms the data to binary indicator variables internally. It is possible to leave behind the generated indicators for further analysis (see the generate() option). The generated variables take on the values 1 or 0—with 1 indicating a response—for the sample of relevant cases (see above); irrelevant cases contain missing values (.) for these variables. Thus using mrtab to produce indicator variables may also make sense if the data are in the indicator mode already but are not 0/1 or should be harmonized to cover the same subsample of cases.

❑ Technical Note

If the multiple-response data are stored according to the polytomous mode and if the used variables are numeric, the information for labeling the rows (i.e., the response categories) is taken from the label definitions of the first variable. It is therefore important that the labels of the first variable be well defined. A good approach is, for example, to use just one set of label definitions, which is attached to all variables used for a certain multiple-response question.

❑ One-way table options

poly specifies that the responses are stored according to the polytomous mode. If poly is not specified, mrtab assumes that the responses are stored according to the indicator mode. However, string response variables imply poly.

response(numlist) specifies the (range of) response values. If the data are stored according to the indicator mode, response() specifies the values that indicate a response to the item. response() defaults to 1 in this case. Note that the indicator variables do not necessarily have to be dichotomous since a list or range of values may be specified. If the data are stored according to the polytomous mode, response()
specifies the list or range of responses that are to be tabulated. The default is to tabulate every value observed for the response variables (except for missing values). In the case of string variables, the \texttt{response()} option is obsolete.

\texttt{countall} requests that repeated identical responses be added up (allowed only for polytomous response variables; see the \texttt{poly} option). By default, repeated identical responses will only be counted once per observation. Note that significance tests may not be requested if \texttt{countall} is specified. Be careful interpreting results that are labeled “percentage of cases”; though they reflect the mean number of responses per observation, they cannot be interpreted as proportions.

\texttt{include} specifies that observations composed of zero responses be treated as valid. Only cases with “real” misses (\ldots, .a, .b, .c, \ldots) for all response variables will be excluded. Note that \texttt{include} will affect only the number of valid cases; i.e., both the absolute distribution of responses and the distribution relative to the total of responses will remain unchanged. In the case of string response variables, \texttt{include} specifies that cases with only empty strings (""") be treated as valid.

\texttt{includemissing} is an enhancement to \texttt{include} and specifies that cases be treated as valid, even if all response variables are missing. \texttt{includemissing} implies \texttt{include}. Specifying \texttt{includemissing} in connection with \texttt{casewise} has the effect that cases with missing values for at least one of the response variables will be treated as valid cases composed of zero responses.

\texttt{casewise} specifies that observations with missing values for at least one of the response variables be excluded listwise.

\texttt{title(string)} may be used to label the multiple-response set. \texttt{string} will be printed at the head of the table.

\texttt{width(\#)} specifies the maximum width (number of characters) used to display the labels of the responses. Labels that are too wide are wrapped (or abbreviated if the \texttt{abbrev} option is specified). The default width is 30. The minimum width is 11.

\texttt{abbrev} specifies that long response labels be abbreviated rather than wrapped.

\texttt{nolabel} suppresses the printing of labels.

\texttt{nonames} suppresses the printing of variable names or category values in the left stub of the table; i.e., only the labels will be printed. This option has no effect if the responses are recorded by string variables, and it is not allowed if the response variables are unlabeled or the \texttt{nolabel} option is specified.

\texttt{format(\%fmt)} specifies the display format for relative frequencies.

\texttt{integer} specifies the display of frequencies as integers, even if \texttt{aweights} are applied.
sort[(#)] displays the table rows in ascending order of frequency. In the case of a two-way table, the sorting will correspond to the row totals, unless a reference column is specified in parentheses. That is, sort(1) will sort in order of the frequencies in the first column (first by-group), sort(2) in order of the frequencies in the second column, and so on. Specify the descending option to sort in descending order.

descending specifies that the sort order be descending. The default is to sort in ascending order. This is only relevant if the sort option is specified.

generate(prefix) creates a set of indicator variables reflecting the observed responses. The variables will be labeled and named according to the prefix provided. If the name(string) option is specified, the first eight characters of string are inserted into the variable labels. If the chi2 or lrchi2 options are specified, generate will additionally return a composite string variable, prefixrp, which reflects response patterns (each unique combination of responses is represented by a string of zeros and ones).

nofreq suppresses printing the frequencies (i.e., the whole frequency table will be suppressed, unless cell, column, row, rcell, or rcolumn is specified for two-way tables).

Two-way table options

by(varname) is required and tabulates the distribution of responses against the categories of varname (two-way table). The by-variable may be string or numeric.

column displays in each cell of a two-way table the relative frequency of that cell within its column (base: column total of observations).

row displays in each cell of a two-way table the relative frequency of that cell within its row (base: row total of responses; this is equal to the row total of observations unless countall is specified).

cell displays the relative frequency of each cell in a two-way table (base: total number of valid observations).

rcolumn displays in each cell of a two-way table the relative frequency of that cell within its column (base: column total of responses).

rcell displays the relative frequency of each cell in a two-way table (base: total number of responses).

chi2 requests the calculation of an overall Pearson’s χ^2 statistic for the hypothesis that the distribution of response patterns is independent of the values of the by-variable. That is, a standard χ^2 test is applied to an expanded two-way table, where the rows represent unique combinations of responses. Note that the chi2 option is not allowed if aweights are specified.

lrchi2 requests the calculation of an overall likelihood-ratio χ^2 statistic (as an alternative to chi2). Note that the lrchi2 option is not allowed if aweights are specified and that the statistic will not be calculated if there are empty cells.
mtest[(method)] requests the calculation of separate Pearson χ^2 statistics for each response category. That is, a test is carried out for each response category to establish whether the probability of observing the response depends on the values of the by-variable. Note that the mtest option is not allowed if aweights are specified. Multiple-test adjustments may be requested by specifying the method in parentheses. Currently available methods are bonferroni, holm, sidak, and noadjust. See the online help for mtest for further information.

mlrchi2 requests mtest to use the likelihood-ratio χ^2 statistics instead of Pearson’s χ^2.

wrap requests that no action be taken on wide two-way tables to make them readable. Unless wrap is specified, wide tables are broken into pieces to enhance readability.

Saved Results

mrtab saves in r():

Scalars

<table>
<thead>
<tr>
<th>r(N)</th>
<th>number of valid cases</th>
<th>r(p)</th>
<th>p-value of the overall Pearson’s χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r(N,miss)</td>
<td>number of missing cases</td>
<td>r(chi2,lr)</td>
<td>overall likelihood-ratio χ^2 if lrchi2 is specified</td>
</tr>
<tr>
<td>r(r)</td>
<td>number of response categories</td>
<td>r(p,lr)</td>
<td>p-value of the overall likelihood-ratio χ^2</td>
</tr>
<tr>
<td>r(c)</td>
<td>number of by-groups if by() is specified</td>
<td>r(df)</td>
<td>degrees of freedom of the overall χ^2 tests</td>
</tr>
<tr>
<td>r(chi2)</td>
<td>overall Pearson’s χ^2 if chi2 is specified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macros

<table>
<thead>
<tr>
<th>r(list)</th>
<th>list of the labels of the responses, if available</th>
<th>r(bylist)</th>
<th>list of the labels of the by-groups, if available</th>
</tr>
</thead>
<tbody>
<tr>
<td>r(mode)</td>
<td>either indicator or poly, depending on the mode of the multiple-response variables</td>
<td>r(bytype)</td>
<td>either numeric or string, depending on the storage type of the by-variable</td>
</tr>
<tr>
<td>r(type)</td>
<td>either numeric or string, depending on the storage type of the multiple-response variables</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrices

<table>
<thead>
<tr>
<th>r(responses)</th>
<th>frequencies of responses</th>
<th>r(mchi2)</th>
<th>Pearson’s χ^2 and (adjusted) p-values of the separate tests if mtest is specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>r(cases)</td>
<td>cases in by-groups if by() is specified</td>
<td>r(mchi2,lr)</td>
<td>likelihood-ratio χ^2 and (adjusted) p-values of the separate tests if mtest and mlrchi2 are specified</td>
</tr>
</tbody>
</table>
3.2 Graphs

Syntax

mrgraph \{ bar | hbar | dot | tab \} varlist [weight] [if exp] [in range] [, poly \\
response(numlist) countall include includemissing casewise sort[(#)] \\
descending by(varname[, by subopts]) stat(statname) rtotal ctotal \\
nopercent noblal addval[(string)] width(#) height(#) \\
over subopts(over subopts) graph_options]

where by subopts is inboard \\
or outboard [over subopts] \\
or separate [suboptions]

and statname is \{ freq | column | row | cell | rcolumn | rcell \}

fweights and aweights are allowed with mrgraph; see \[U\] 14.1.6 weight.

Description

mrgraph is a utility to produce graphs of multiple-response variables. The syntaxes mrgraph bar, mrgraph hbar, and mrgraph dot are specified to indicate use of graph bar, graph hbar, and graph dot, respectively (see \[G\] graph bar and \[G\] graph dot). The size (height or length) of the bars or the position of the dots in the graph corresponds to the frequencies (or, optionally, proportions) of the responses. Thus mrgraph works pretty much like Nick Cox’s catplot (Cox 2004), only the frequencies of the categories of a multiple-response question are plotted instead of those of an ordinary categorical variable. Furthermore, mrgraph tab produces table plots in the manner of tabplot (Cox 2004). mrgraph is implemented as a wrapper for mrtab followed by _mrsvmat (see below) and graph.

Options

poly specifies that the responses are stored in polytomous mode. See section 3.1 for details on this option.

response(numlist) specifies the (range of) response values. See section 3.1 for details on this option.

countall requests that repeated identical responses be added up. See section 3.1 for details on this option.

include specifies that observations composed of zero responses be treated as valid. See section 3.1 for details on this option.
include missing is an enhancement to include and specifies that cases be treated as valid, even if all response variables are missing. See section 3.1 for details on this option.

casewise specifies that observations having missing values for at least one of the response variables be excluded listwise.

sort \[(\#)\] draws the categories in ascending order of frequency. If the by() option is specified, the sorting will correspond to the totals over all groups, unless a reference group is specified in parentheses. That is, sort(1) will sort in order of the frequencies in the first by-group, sort(2) in order of the frequencies in the second by-group, and so on. Specify the descending option to sort in descending order.

descending specifies that the sort order be descending. The default is to sort in ascending order. This is only relevant if the sort option is specified.

by(varname[, by_subopts]) draws the conditional distributions of responses for the categories of varname. The by-variable may be string or numeric. The by_subopts control the grouping of the results in the graph if the graph type is mrgraph bar, mrgraph hbar, or mrgraph dot. Possible specifications are

inboard
 The categories of the by-variable are grouped within the categories of the multiple-response variables. This is the default.

outboard [over_subopts]
 The categories of the multiple-response variables are grouped within the categories of the by-variable. The separation of the by-groups is implemented as an additional over statement in the internal graph call. Thus over_subopts may be specified. See [G] graph bar and [G] graph dot.

separate [suboptions]
 For each category of the by-variable, a separate plot is drawn within a single graph. This conforms to the default behavior of the by option in Stata’s graph commands (which, however, is not the default in mrgraph). See [G] by_option for details on the suboptions.

stat(statname) determines the statistic on which the graph is to be based. statname is either freq, if raw frequencies are used, or column (base: column total of observations), row (base: row total), cell (base: grand total of valid observations), rcolumn (base: column total of responses), or rcell (base: grand total of responses), if relative frequencies are used. stat(freq) is the default.

rtotal specifies that row totals be reported.

cctotal specifies that column totals be reported.

nopercent specifies that relative frequencies be formatted as proportions (e.g., .271) instead of percentages (e.g., 27.1).

nolabel specifies that labels be ignored.
addval[(string)] specifies that labels and values (or variable names in the case of the indicator mode) be used to mark the responses in the graph. The values and labels will be separated by string if specified or by a blank otherwise (use quotes if the desired delimiter is supposed to have leading or trailing blanks, i.e., addval("; ")). If the addval option is not specified, labels are used exclusively. If no labels are available, however, values are used, and addval will have no effect. Furthermore, addval will have no effect if the response variables are string.

width(#) specifies the maximum width (number of chars) used to draw the labels of the responses. Labels that are too wide are wrapped. Note that the single words in the labels will not be broken. If no width is specified, labels are not wrapped.

height(#) controls the amount of available graph space taken up by bars in the table plot. This option is only relevant if the graph type is mrgraph tab. The default is 0.8.

oversubopts(over_subopts) may be used to pass through suboptions to the over option, which is applied by mrgraph in the internal call of the graph command. This is only relevant for the graph types mrgraph bar, mrgraph hbar, and mrgraph dot. For further explanations of the over option and its suboptions, see [G] graph bar and [G] graph dot. Do not use the sort suboption; use mrgraph’s own sort option instead (see above).

describe any options documented in [G] graph bar, [G] graph hbar, ...

3.3 From tables to datasets

Syntax

```
_mrsvmat [ , stat(statname) rtotal ctotal nopercent nolabel clear]
```

where statname is \{ freq|column|row|cell|rcolumn|rcell \}

Description

_mrsvmat is a low-level utility which may be used after mrtab to prepare a data matrix for creating graphs of the tabulated distribution. Do not use _mrsvmat, unless you are confident that mrgraph does not meet your needs. It is important to understand that _mrsvmat will destroy the data in memory; therefore, it should always be used in connection with preserve (see [R] preserve). _mrsvmat will replace the data in memory with a data matrix created from the results left behind by mrtab. Each row of the new data will represent one row of the table displayed by mrtab; that is, each row will represent one response category. Additionally, a row holding column totals will be added if the ctotal option is specified. _mrsvmat will generate the following variables:
Variable Description

R Values of the response categories or names of the variables representing the response items, depending on the structure of the original data.

L Labels of the response categories. Variable L will be suppressed if either no labels are found or the no label option is specified.

C1, C2, ... Frequencies of responses. In the case of two-way tables, each variable represents one column of the multiple-response table. In the case of a one-way table, just one variable, C1, will be created. Depending on the user’s choice, the data cells will either contain raw counts or frequencies relative to a specified base (see the stat() option).

T Row totals if option rtotal is specified; suppressed otherwise.

Options

stat(statname) determines the statistic to be saved. statname is either freq for raw frequencies or column (base: column total of observations), row (base: row total), cell (base: grand total of valid observations), rcolumn (base: column total of responses), or rcell (base: grand total of responses) for relative frequencies. stat(freq) is the default.

rtotal specifies that row totals be saved.

column specifies that column totals be saved.
nopercent specifies that relative frequencies be formatted as proportions (e.g., .271) instead of percentages (e.g., 27.1).
nolabel specifies that labels be ignored.
clear allows mrsymat to clear the data in memory without asking for confirmation.

4 Remarks and examples

To illustrate the use of multiple-response commands, I will present analyses of data collected by Braun et al. (2001). The respondents in this study were drug addicts in three major cities in Switzerland in 1997.

4.1 One-way tables

The indicator mode

The respondents in the study by Braun et al. (2001) were asked to indicate their sources of income in the last three months. A list of possible sources was provided in the questionnaire. Braun et al. recorded the data with a set of 0/1 variables, one for each income source:
use drugs
(1997 Survey Data on Swiss Drug Addicts)

describe inco1-inco7

<table>
<thead>
<tr>
<th>variable name</th>
<th>storage type</th>
<th>display format</th>
<th>value label</th>
<th>variable label</th>
</tr>
</thead>
<tbody>
<tr>
<td>inco1</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>private support (partner, family, friends)</td>
</tr>
<tr>
<td>inco2</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>public support (unemployment insurance, social benefits)</td>
</tr>
<tr>
<td>inco3</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>drug dealing</td>
</tr>
<tr>
<td>inco4</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>housebreaking, theft, robbery</td>
</tr>
<tr>
<td>inco5</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>prostitution</td>
</tr>
<tr>
<td>inco6</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>"mischeln"/begging</td>
</tr>
<tr>
<td>inco7</td>
<td>byte</td>
<td>%8.0g</td>
<td>yesno</td>
<td>legal occupation</td>
</tr>
</tbody>
</table>

Note that "mischeln" is a Swiss–German word and describes a form of begging in which the beggar actively approaches people for money (i.e., walks up to them and asks them for money).

In the first step of the data analysis one would probably like to tabulate the sample distribution of the income sources. However, because the information is stored across several variables, the `tabulate` command is not very convenient: each of the indicator variables would have to be tabulated separately. Because the variables are 0/1 in the present case, we could, however, use the `tabstat` command to tabulate the sums and the proportions of the responses:

```
.tabstat inco1-inco7, s(sum mean) c(s)
```

<table>
<thead>
<tr>
<th>variable</th>
<th>sum</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>inco1</td>
<td>226</td>
<td>.2325103</td>
</tr>
<tr>
<td>inco2</td>
<td>607</td>
<td>.6244856</td>
</tr>
<tr>
<td>inco3</td>
<td>293</td>
<td>.3014403</td>
</tr>
<tr>
<td>inco4</td>
<td>50</td>
<td>.0514403</td>
</tr>
<tr>
<td>inco5</td>
<td>82</td>
<td>.0843621</td>
</tr>
<tr>
<td>inco6</td>
<td>151</td>
<td>.1553498</td>
</tr>
<tr>
<td>inco7</td>
<td>352</td>
<td>.3621399</td>
</tr>
</tbody>
</table>

We see, for example, that 36 % of the respondents ticked the 7th income source (legal occupation). Unfortunately, the `tabstat` output is rather meager. A more informative output can, however, be obtained by using the new `mrtab` command:

```
(Continued on next page)
```
The different response categories are nicely labeled, and it is possible, for instance, to sort the categories in order of frequency. Therefore, it is immediately evident from the table above that “public support” is the source of income that has been named the most often, whereas “housebreaking, theft, robbery” is the least-frequent source of income.

In addition to percentages on the basis of observations (i.e., cases) `mrtab` also reports percentages with respect to the overall sum of responses. For example, 35% of all responses are “public support”. Furthermore, `mrtab` also provides a row reporting the totals over all response categories. Note that the total printed in the “percentage of cases” column reflects the average number of responses per subject (multiplied by 100). Thus the mean number of sources of income is approximately 1.8 in this study.

Technical Note

Note that, in the above example, the percentages reported by `mrtab` slightly differ from the means calculated by `tabstat`. The reason for the difference is that `mrtab` excluded 9 observations for which no sources of income were recorded. In such cases, it is often not clear a priori whether the respondent refused to answer the question (and thus should be excluded from analysis) or whether the correct response is simply “none” (in which case, the observation should be accounted for). Because the determination of the correct denominator depends on the context (e.g., the specific construction of the question, the topic, how the data have been recorded, etc.), `mrtab` provides specific options to determine the sample of valid observations (include, includemissing, casewise). In the context of the present example, it seems reasonable to include the observations with zero responses because the given list of seven different income types is probably not exhaustive. We, thus, should have specified
Tabulation of multiple responses

```
. mrtab inco1-inco7, include sort title(Sources of income)

<table>
<thead>
<tr>
<th>Sources of income</th>
<th>Frequency</th>
<th>Percent of responses</th>
<th>Percent of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>inco4 housebreaking, theft, robbery</td>
<td>50</td>
<td>2.84</td>
<td>5.14</td>
</tr>
<tr>
<td>inco5 prostitution</td>
<td>82</td>
<td>4.66</td>
<td>8.44</td>
</tr>
<tr>
<td>inco6 &quot;mischeln&quot;/begging</td>
<td>151</td>
<td>8.57</td>
<td>15.53</td>
</tr>
<tr>
<td>inco1 private support (partner, family, friends)</td>
<td>226</td>
<td>12.83</td>
<td>23.25</td>
</tr>
<tr>
<td>inco3 drug dealing</td>
<td>293</td>
<td>16.64</td>
<td>30.14</td>
</tr>
<tr>
<td>inco7 legal occupation</td>
<td>352</td>
<td>19.99</td>
<td>36.21</td>
</tr>
<tr>
<td>inco2 public support (unemployment insurance, social benefits)</td>
<td>607</td>
<td>34.47</td>
<td>62.45</td>
</tr>
<tr>
<td>Total</td>
<td>1761</td>
<td>100.00</td>
<td>181.17</td>
</tr>
</tbody>
</table>

Valid cases: 972
Missing cases: 0
```

Technical Note

Although the variables in the indicator mode are interpreted in a dichotomous manner, they do not necessarily have to be 0/1 nor dichotomous in general. Basically, all kinds of variables are allowed, as long as they are integer. By default, `mrtab` interprets the value “1” as a response and all the other values (e.g., “0”) as “no response”. However, the default response value may be changed via the `response(numlist)` option. If specified, any value of `numlist` will be considered as indicating a response.

The respondents in the drug study were also asked about their experiences with crime. (“Have you been involved in the following offenses . . . during the last 12 months: hit someone; used a weapon against someone; sexual harassment, rape; robbery; black-mail?”) For each of the different types of crimes a variable like the following has been recorded:

```
. codebook crime1
```

<table>
<thead>
<tr>
<th>crime1</th>
<th>hit someone</th>
</tr>
</thead>
<tbody>
<tr>
<td>type: numeric (byte)</td>
<td></td>
</tr>
<tr>
<td>label: crime</td>
<td></td>
</tr>
<tr>
<td>range: [0,3]</td>
<td></td>
</tr>
<tr>
<td>units:</td>
<td></td>
</tr>
<tr>
<td>unique values: 4</td>
<td></td>
</tr>
<tr>
<td>missing: 65/972</td>
<td></td>
</tr>
<tr>
<td>tabulation:</td>
<td></td>
</tr>
<tr>
<td>Freq.</td>
<td>Numeric</td>
</tr>
<tr>
<td>716</td>
<td>0</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

As indicated by the value labels, it is probably sensible to distinguish between criminal experiences in the role of a committer and criminal experiences in the role of the victim. Thus with the help of the `response()` option, we derive the following results:
B. Jann

The first part of the output reports the frequencies of criminal experiences as a committer (or committer and victim), the second the frequencies of experiences as a victim (or victim and committer). Apparently, the respondents reported that they had been a victim of a crime considerably more often than they had committed a crime themselves. Thus either the sample is selective, the respondents did not report all the crimes they committed, or there are a few subjects committing many crimes repeatedly. Note that 65 respondents with missing information for this question were excluded.

The polytomous mode

Sometimes, if the list of possible response categories is open, for instance, it is convenient to store the answers to multiple-response questions as a set of polytomous variables. For example, the answers to the question on income sources of drug addicts in Switzerland could have been recorded in polytomous mode rather than using a set of indicator variables. The maximum number of possible responses per observation is seven in this specific case because the list of response categories is limited to seven different income sources. However, the realized maximum of responses is only six. Thus six polytomous response variables are required. The following output shows one of them:\footnote{The data have been generated by saving each respondent’s answers in random order. The shuffling of the answers was done by the \texttt{sortlistby2} command, which is available from the SSC Archive (type \texttt{ssc describe sortlistby}).}
Multiple responses that are stored in such a way cannot be tabulated using `tabstat` because the information on the single response categories is spread out over several variables. The data would have to be transformed to indicator mode beforehand, which is quite a complicated task. However, polytomous multiple-response variables can be tabulated by `mrtab` if the `poly` option is specified:

```
.mrtab pinco1-pinco6, poly response(1/7) include sort abbrev
```

Furthermore, string variables can also be tabulated by `mrtab`, as is shown in the following example. Note that it is not necessary to specify the `poly` option in the case of string variables.
. codebook sincol

sincol (unlabeled)

type: string (str56)
unique values: 7
missing "": 9/972

warning: variable has embedded blanks

. mrtab sincol-sincol6, include sort abbrev

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent of responses</th>
<th>Percent of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>housebreaking, theft, robbery</td>
<td>50</td>
<td>2.84</td>
</tr>
<tr>
<td>prostitution</td>
<td>82</td>
<td>4.66</td>
</tr>
<tr>
<td>"mischeln"/begging</td>
<td>151</td>
<td>8.57</td>
</tr>
<tr>
<td>private support (partner, family, friends)</td>
<td>226</td>
<td>12.83</td>
</tr>
<tr>
<td>drug dealing</td>
<td>293</td>
<td>16.64</td>
</tr>
<tr>
<td>legal occupation</td>
<td>352</td>
<td>19.99</td>
</tr>
<tr>
<td>public support (unemployment insurance, social benefits)</td>
<td>607</td>
<td>34.47</td>
</tr>
<tr>
<td>Total</td>
<td>1761</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Valid cases: 972
Missing cases: 0

❑ Technical Note

In the case of "half-open" multiple-response questions, a mixed storage design is sometimes applied (half-open means that some categories are spelled out and can be ticked, but there are also some empty lines which can be filled with further answers). That is, the first part of the answers is stored in indicator mode (the tickable items) while the rest are held in polytomous mode. It may be convenient to use mrtab's generate() option in such a case to transform the polytomous part to indicator mode.

❑

Significance tests

The test for equality of proportions in matched samples proposed by Cochran (1950) may be applied to evaluate the significance of the differences among the proportions of the single response categories. If c is the number of response categories, T_j the number of responses in the jth category, \bar{T} the mean number of responses per category, and u_i
Tabulation of multiple responses

the number of responses in the \(i \)th observation, the test statistic proposed by Cochran is then defined as

\[
Q = \frac{c(c - 1) \sum_j (T_j - \bar{T})^2}{c \sum_i u_i - \sum_i u_i^2}
\]

For large samples, \(Q \) is \(\chi^2 \)-distributed with \((c - 1) \) degrees of freedom. Note that in the case of only two response categories, the Cochran test is equal to the McNemar \(\chi^2 \) test implemented in \texttt{mcc} (see \texttt{[ST] epitab}).

In our example on income sources, the differences in the proportions of the various responses are highly significant (this is not surprising since the proportions range from 5\% to 62\%!):

\[
\begin{align*}
\text{. mrtab pinco1-pinco6, poly response(1/7) nofreq include generate(_inco)} \\
\text{. cochran _inco*}
\end{align*}
\]

Test for equality of proportions in matched samples (Cochran's Q):

\[
\begin{align*}
\text{Number of obs} & = 972 \\
\text{Cochran's chi2(6)} & = 1123.529 \\
\text{Prob > chi2} & = 0.0000
\end{align*}
\]

. drop _inco*

Note that the \texttt{cochran} command is not part of the official release of Stata. However, it can be obtained from the SSC Archive (type \texttt{ssc install cochran}).

\section*{Technical Note}

An alternative approach to testing for differences in the proportions would be to transform the data to long format (see \texttt{[R] reshape}) and then estimate, for example, a logistic regression, including dummy variables for the different response categories and correcting the standard errors for the clustering on observations:

\[
\begin{align*}
\text{. preserve} \\
\text{. mrtab pinco1-pinco6, poly response(1/7) nofreq include generate(_inco)} \\
\text{. reshape long _inco, i(id) j(R)}
\end{align*}
\]

(\textit{output omitted})

\textit{(Continued on next page)}
. xi: logit _inco i.R, cluster(id) nolog
i.R _IR_1-7 (naturally coded; _IR_1 omitted)

Logit estimates
Number of obs = 6804
Wald chi2(6) = 895.23
Prob > chi2 = 0.0000

Log pseudo-likelihood = -3299.692 Pseudo R2 = 0.1519

(standard errors adjusted for clustering on id)

Robust

<table>
<thead>
<tr>
<th></th>
<th>Robust</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>_inco</td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
<td>z</td>
</tr>
<tr>
<td>_IR_2</td>
<td>1.702822</td>
<td>0.1020924</td>
<td>16.68</td>
<td>0.000</td>
<td>1.502725</td>
<td>1.902919</td>
</tr>
<tr>
<td>_IR_3</td>
<td>0.3537421</td>
<td>0.1016399</td>
<td>3.48</td>
<td>0.001</td>
<td>0.1545315</td>
<td>0.5529527</td>
</tr>
<tr>
<td>_IR_4</td>
<td>-1.720332</td>
<td>0.1598888</td>
<td>-10.76</td>
<td>0.000</td>
<td>-2.033708</td>
<td>-1.406955</td>
</tr>
<tr>
<td>_IR_5</td>
<td>-1.190312</td>
<td>0.137136</td>
<td>-8.68</td>
<td>0.000</td>
<td>-1.459093</td>
<td>-0.9215301</td>
</tr>
<tr>
<td>_IR_6</td>
<td>-0.4990527</td>
<td>0.1091339</td>
<td>-4.57</td>
<td>0.000</td>
<td>-0.7129512</td>
<td>-0.2851541</td>
</tr>
<tr>
<td>_IR_7</td>
<td>0.6281023</td>
<td>0.1018616</td>
<td>6.17</td>
<td>0.000</td>
<td>0.4284573</td>
<td>0.8277473</td>
</tr>
<tr>
<td>_cons</td>
<td>-1.194191</td>
<td>0.0759684</td>
<td>-15.72</td>
<td>0.000</td>
<td>-1.343086</td>
<td>-1.045295</td>
</tr>
</tbody>
</table>

. restore

The null hypothesis of equal proportions is rejected if the overall Wald χ^2 of the model is significant (which is obviously the case here). Note that the choice of the logistic regression model is not crucial here. We might as well use probit or even linear regression. The only really important thing is to take account of the clustering (an issue that is sometimes referred to as “matched samples”). We might also think of applying panel models, e.g., xtlogit or xtreg (see [XT] xt; the tests based on panel models will usually be more efficient).

4.2 Two-way tables

In most applications, not only the marginal distribution of the responses is of interest, but also the conditional distributions with regard to the values of some other variable. For example, it might be interesting to examine the differences among the drug scenes in the three cities covered in the study by Braun et al. (2001). Again considering the income sources of the drug addicts, we could use mrtab to produce the following two-way table:

(Continued on next page)
Tabulation of multiple responses

\[\texttt{. mrtab inc01-inc07, include sort title(Sources of income) nonames} \]
\[\texttt{> width(28) by(city) column} \]

<table>
<thead>
<tr>
<th>Key</th>
<th>frequency of responses</th>
<th>column percent of cases</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sources of income</th>
<th>Basel</th>
<th>Bern</th>
<th>Zurich</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>housebreaking, theft,</td>
<td>13</td>
<td>23</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>robbery</td>
<td>3.74</td>
<td>7.99</td>
<td>4.17</td>
<td>5.14</td>
</tr>
<tr>
<td>prostitution</td>
<td>20</td>
<td>38</td>
<td>24</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>5.75</td>
<td>13.19</td>
<td>7.14</td>
<td>8.44</td>
</tr>
<tr>
<td>"mischeln"/begging</td>
<td>43</td>
<td>62</td>
<td>46</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>12.36</td>
<td>21.53</td>
<td>13.69</td>
<td>15.53</td>
</tr>
<tr>
<td>private support (partner,</td>
<td>92</td>
<td>71</td>
<td>63</td>
<td>226</td>
</tr>
<tr>
<td>family, friends)</td>
<td>26.44</td>
<td>24.65</td>
<td>18.75</td>
<td>23.25</td>
</tr>
<tr>
<td>drug dealing</td>
<td>102</td>
<td>101</td>
<td>90</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>29.31</td>
<td>35.07</td>
<td>26.79</td>
<td>30.14</td>
</tr>
<tr>
<td>legal occupation</td>
<td>132</td>
<td>103</td>
<td>117</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>37.93</td>
<td>35.76</td>
<td>34.82</td>
<td>36.21</td>
</tr>
<tr>
<td>public support (unemployment</td>
<td>205</td>
<td>172</td>
<td>230</td>
<td>607</td>
</tr>
<tr>
<td>insurance, social benefits)</td>
<td>58.91</td>
<td>59.72</td>
<td>68.45</td>
<td>62.45</td>
</tr>
<tr>
<td>Total</td>
<td>607</td>
<td>570</td>
<td>584</td>
<td>1761</td>
</tr>
<tr>
<td></td>
<td>174.43</td>
<td>197.92</td>
<td>173.81</td>
<td>181.17</td>
</tr>
<tr>
<td>Cases</td>
<td>348</td>
<td>288</td>
<td>336</td>
<td>972</td>
</tr>
</tbody>
</table>

Valid cases: 972
Missing cases: 0

It is striking that the drug scene in Bern is quite different from the scenes in the two other cities. The Bern scene seems to be much more criminal: the measured rates of theft/robbery, prostitution, and drug dealing are clearly highest. In addition, the proportion of beggars is highest in the Bern sample. Another substantial difference in the table is that Zurich has a relatively high rate of drug addicts who live off public support, whereas the proportion of respondents receiving private support is relatively low. Possibly, there is a tradeoff between public and private support.

Significance tests

In order to assess whether the observed differences between the cities are significant or not, we can, for example, conduct an overall Pearson or likelihood-ratio χ^2 test that is based on an expanded table of the frequencies of response “patterns” by cities. Applied to the above table, the results of the tests are
. mrtab inco1-inco7, include by(city) nofreq chi2 lrchi2 generate(_inco)

Overall Test(s) of Significance:

Pearson chi2(150) = 210.0806 Pr = 0.001
likelihood-ratio chi2(150) = .

The Pearson χ^2 test indicates that the differences are indeed significant (assuming a 5% significance level). But what about the likelihood-ratio test? Apparently it could not be evaluated because of the occurrence of empty cells. The problem is that the test is based on a variable identifying response “patterns”. In the example above, the patterns variable looks as follows (first six cases only):

. list _inco in 1/6, clean

<table>
<thead>
<tr>
<th>_inco</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000010</td>
</tr>
<tr>
<td>0100000</td>
</tr>
<tr>
<td>0000010</td>
</tr>
<tr>
<td>0100000</td>
</tr>
<tr>
<td>0000010</td>
</tr>
<tr>
<td>1100000</td>
</tr>
</tbody>
</table>

That is, a response pattern is a composite string of zeros and ones with ones indicating a response. For instance, respondent 1’s source of income is a legal occupation, respondent 6’s sources are theft and prostitution, etc. As the number of response categories increases, the number of unique response patterns grows exponentially. In the present case of seven categories, there are $2^7 = 128$ unique patterns. This means that the table of the patterns variable against the three cities potentially has $128 \cdot 3 = 384$ cells. Quite a few observations are needed to fill all these cells. The overall test, thus, is not very powerful (many degrees of freedom) and is only suited if there are very few categories.

A better and probably more informative strategy is to test each row of the table separately. This can be done using standard χ^2 or likelihood-ratio tests for two-way tables; in fact, each row of a two-way multiple-response table is nothing else than a dense version of a $2 \times k$ table of a specific response indicator against the by-variable. Use mrtab’s mtest option to add a column to the multiple-response table reporting the results of the row-specific tests:

(Continued on next page)
Tabulation of multiple responses

```
. mrtab inco1-inco7, include sort title(Sources of income) nonames
> width(19) by(city) column mtest(bonferroni)
```

<table>
<thead>
<tr>
<th>Sources of income</th>
<th>Basel</th>
<th>Bern</th>
<th>Zurich</th>
<th>Total</th>
<th>chi2/p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>housebreaking, theft, robbery</td>
<td>13</td>
<td>23</td>
<td>14</td>
<td>50</td>
<td>6.840</td>
</tr>
<tr>
<td></td>
<td>3.74</td>
<td>7.99</td>
<td>4.17</td>
<td>5.14</td>
<td>0.229</td>
</tr>
<tr>
<td>prostitution</td>
<td>20</td>
<td>38</td>
<td>24</td>
<td>82</td>
<td>12.427</td>
</tr>
<tr>
<td></td>
<td>5.75</td>
<td>13.19</td>
<td>7.14</td>
<td>8.44</td>
<td>0.014</td>
</tr>
<tr>
<td>"mischeln"/begging</td>
<td>43</td>
<td>62</td>
<td>46</td>
<td>151</td>
<td>11.433</td>
</tr>
<tr>
<td></td>
<td>12.36</td>
<td>21.53</td>
<td>13.69</td>
<td>15.63</td>
<td>0.023</td>
</tr>
<tr>
<td>private support</td>
<td>92</td>
<td>71</td>
<td>63</td>
<td>226</td>
<td>6.111</td>
</tr>
<tr>
<td>(partner, family, friends)</td>
<td>26.44</td>
<td>24.65</td>
<td>18.75</td>
<td>23.25</td>
<td>0.330</td>
</tr>
<tr>
<td>drug dealing</td>
<td>102</td>
<td>101</td>
<td>90</td>
<td>293</td>
<td>5.232</td>
</tr>
<tr>
<td></td>
<td>29.31</td>
<td>35.07</td>
<td>26.79</td>
<td>30.14</td>
<td>0.512</td>
</tr>
<tr>
<td>legal occupation</td>
<td>132</td>
<td>103</td>
<td>117</td>
<td>352</td>
<td>0.751</td>
</tr>
<tr>
<td></td>
<td>37.93</td>
<td>35.76</td>
<td>34.82</td>
<td>36.21</td>
<td>1.000</td>
</tr>
<tr>
<td>public support (unemployment insurance, social benefits)</td>
<td>205</td>
<td>172</td>
<td>230</td>
<td>607</td>
<td>7.938</td>
</tr>
<tr>
<td></td>
<td>58.91</td>
<td>59.72</td>
<td>68.45</td>
<td>62.45</td>
<td>0.132</td>
</tr>
<tr>
<td>Total</td>
<td>607</td>
<td>570</td>
<td>584</td>
<td>1761</td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>174.43</td>
<td>197.92</td>
<td>173.81</td>
<td>181.17</td>
<td></td>
</tr>
</tbody>
</table>

* Pearson chi2(2) / Bonferroni adjusted p-values

Valid cases: 972
Missing cases: 0

Note that, in the example, the p-values have been adjusted for the fact that a series of tests is performed (see, e.g., Wright 1992). There are several adjustment methods available (bonferroni, holm, sidak; see the online help for mtest for formulas and further details). The results above indicate that the differences among the three cities concerning prostitution and begging are significant.

Technical Note

An alternative and more flexible strategy would again be to reshape the data and apply regression models. First, dummy variables for the different response categories need to be introduced to the model to account for the different levels of prevalence.
To evaluate the overall significance of the differences among the response distributions in the three cities, we then include dummy variables for the cities, as well as for all interactions between cities and response categories, and perform a joint test for all these parameters:

```
preserve
. mrtab inco1-inco7, include nofreq generate(_inco)
. reshape long _inco, i(id) j(R)
(output omitted)
. xi: logit _inco i.R*i.city, cluster(id)
(output omitted)
. unab I : _Icity _IRx*
. test 'I'
   ( 1)  _Icity_2 = 0
   ( 2)  _Icity_3 = 0
   ( 3)  _IRXcit_2_2 = 0
   ( 4)  _IRXcit_2_3 = 0
   ( 5)  _IRXcit_3_2 = 0
   ( 6)  _IRXcit_3_3 = 0
   ( 7)  _IRXcit_4_2 = 0
   ( 8)  _IRXcit_4_3 = 0
   ( 9)  _IRXcit_5_2 = 0
  (10)  _IRXcit_5_3 = 0
  (11)  _IRXcit_6_2 = 0
  (12)  _IRXcit_6_3 = 0
  (13)  _IRXcit_7_2 = 0
  (14)  _IRXcit_7_3 = 0
   chi2( 14) = 43.12
   Prob > chi2 = 0.0001
restore
```

Again, the choice of a specific model is not critical, as long as the specification is correct and the clustering is accounted for. Very similar results are obtained, for example, using `xtlogit` (see `[XT] xtlogit`):

```
. quietly xi: xtlogit _inco i.R*i.city, re i(id)
. estimates store A
. quietly xi: xtlogit _inco i.R, re i(id)
. lrtest A
   (log-likelihoods of null models cannot be compared)
   likelihood-ratio test      LR chi2(14) = 49.23
   (Assumption: . nested in A)  Prob > chi2 = 0.0000
```

4.3 Graphs

A convenient way to illustrate multiple-response distributions are bar charts whereby the sizes of the bars represent the frequencies of the response categories. For example, the frequencies of criminal experiences as a victim (see section 4.1) could be plotted as follows:
Tabulation of multiple responses

. mrgraph bar crime1-crime5, include response(2 3) sort width(15) > title(Criminal experiences (as a victim)) ylabel(,angle(0))

![Bar chart showing criminal experiences as a victim](image)

If the frequencies of two-way multiple-response tables are plotted (e.g., criminal experiences by sex), the grouping of the bars becomes relevant. Thus, the `by()` option of the `mrgraph` command comes in different flavors. The default is to group the categories of the by-variable within the response categories, as is illustrated in the following example:

. mrgraph bar crime1-crime5, include response(2 3) sort width(15) by(sex) > stat(column) title(Criminal experiences (as a victim)) > ylabel(,angle(0)) legend(bmargin(t+1))

![Bar chart showing criminal experiences as a victim by sex](image)
The advantage of this illustration is that the differences between the by-groups can be seen immediately for each response category. However, it might sometimes be preferable to separate the conditional distributions and thus to group the response categories within by-categories:

```
. mrgraph hbar crime1-crime5, include response(2 3) sort by(sex, outboard)
> stat(column) title(Criminal experiences (as a victim)) ylabel(,angle(0))
```

It is also possible to completely separate the conditional distributions and display them as several plots within the same graph. A nice feature of this procedure is that it is possible to sort the separate distributions individually and thus illustrate differences in the ordering of the frequencies:

(Continued on next page)

4Note that it is important to specify `sort(1)` here to achieve the individual sorting. Specifying the `sort` option without argument would sort in order of the unconditional distribution.
Last but not least, a very straightforward method to illustrate a two-way multiple-response table is to construct a “table plot” as proposed by Cox (2004) for ordinary two-way tables:

```
. mrgraph hbar crime1-crime5, include response(2 3) sort(1) width(16)
> stat(column) by(sex, separate title(Criminal experiences (as a victim)))
```

![Graphs by sex](image)

Tabulation of multiple responses

```
. mrgraph tab crime1-crime5, include response(2 3) sort width(16)
> stat(column) by(sex) rtotal title(Criminal experiences (as a victim))
```

![Graphs by sex](image)
Technical Note

The `mrgraph` command is implemented as a wrapper for `mrtab` followed by the low-level utility `_mrsvmat`. The purpose of `_mrsvmat` is to pick up the results calculated by `mrtab` and compose a dataset representing the results (note that the data in memory will be lost). It can be helpful to use the `_mrsvmat` command manually to produce graphs that are not supported by `mrgraph`. The following piece of output provides an example:

```
. mrtab crime1-crime5, include response(2 3) by(sex) nofreq
. preserve
. _mrsvmat, stat(column) ctotal rtotal clear
. list, clean string(20)
     +-----------------+-----------------+-----------------+-----------------+
     | R | L | C1 | C2 | T   | |
|---|---|---|---|---|---|
     | 1 | crime1 | hit someone | 14.46281 | 14.15663 | 14.23841 |
     | 2 | crime2 | use a weapon against | 1.652893 | 3.313253 | 2.869757 |
     | 3 | crime3 | sexual harassment, r. | 12.80992 | 0 | 3.421633 |
     | 4 | crime4 | robbery (including d. | 13.22314 | 9.939759 | 10.81678 |
     | 5 | crime5 | blackmail | 5.785124 | 2.108434 | 3.090508 |
     | 6 | T | Total | 47.93388 | 29.51807 | 34.43708 |
     +-----------------+-----------------+-----------------+-----------------+
. generate x=_n
. scatter C1 C2 x in 1/5, xtitle(Type of crime) ytitle(Percent) > title(Criminal experiences (as a victim))
```

Note that the `_mrsvmat` utility can also be useful for exporting the results of `mrtab`. For example, use Roger Newson’s `listtex` command after having applied `_mrsvmat` in order to create a LaTeX table (see Newson 2003).
5 Acknowledgments

The `mrtab` command is coauthored by Hilde Schaeper (HIS Hannover, Germany). I am greatly indebted to her for starting the project and taking me aboard. I would like to thank her and her colleagues at HIS for many important suggestions and for debugging.

Furthermore, I would like to thank Elisabeth Coutts (ETH Zurich), Jens Lauritsen, and Christian Færgemann (Odense Universitetshotel), Sandro Leidi (University of Reading), and Eric Zbinden (University of Geneva) for helpful comments and suggestions.

6 References

About the Author

Ben Jann (jann@soz.gess.ethz.ch) is research assistant at the Department of Sociology of the Swiss Federal Institute of Technology Zurich (ETH) and a Ph.D. candidate at the University of Bern in Switzerland.