
�

�

�

�

�

�

�

�

The Stata Journal (2006)
6, Number 2, pp. 153–155

Maximum simulated likelihood: Introduction to
a special issue

Maximum simulated likelihood (MSL) makes previously intractable estimators com-
putationally feasible. Faster computers and new simulation techniques are moving MSL

estimators into the mainstream toolbox. This issue of the Stata Journal contains several
papers on this subject. I organized this special issue to bring together work being done
by people inside and outside StataCorp and to highlight Stata’s tools for implementing
MSL methods.

Many likelihoods require you to evaluate high-dimensional integrals. Although mod-
ern adaptive-quadrature methods have extended the set of feasible problems, many
real-world problems involve approximating integrals that cannot be approximated by
quadrature methods in a reasonable amount of time.

Although simulation techniques can be used to approximate the high-dimensional
integrals, only the speed of modern computers and recent advances in simulation meth-
ods have made this task practicable. Estimators obtained by maximizing likelihoods
that are approximated by simulation techniques are known as MSL estimators.1

Several authors have shown that MSL estimators have the same large-sample prop-
erties as maximum likelihood, as long as the number of repetitions, R, used to approx-
imate the integral grows faster than the square root of the number of observations in
the sample,

√
N .2

To provide some intuition for the restriction that
√

N/R → 0, suppose that the
likelihood of interest L(Z,θ) depends on an integral that has no closed form, where Z
is the data and θ is a vector of parameters. MSL estimators generally obtain L̂(Z,θ),
an unbiased approximation to L(Z,θ), by averaging R draws from the underlying dis-
tribution. However, ln{L̂(Z,θ)} is not unbiased for ln{L(Z,θ)}, and ln{L̂(Z,θ)} is the
objective function that MSL maximizes. Although this bias does not affect the consis-
tency of the MSL estimates, it does affect the large-sample variance–covariance of the
estimator, unless

√
N/R → 0.

When you are analyzing a specific dataset with N observations, the requirement that√
N/R → 0 implies that you can choose any real number a > .5, yielding R = �Na�,

where � � returns the greatest integer less than or equal to Na. This ambiguity is
addressed to various extents by most of the MSL-related papers in this issue.

1. Some authors, such as Gouriéroux and Monfont (1996), call them simulated maximum-likelihood
estimators.

2. See Pakes and Pollard (1989) and McFadden (1989) for the original results. Also see
Cameron and Trivedi (2005), Gouriéroux and Monfont (1996), and Train (2003) for excellent intro-
ductions to the statistical theory for maximum likelihood and MSL.
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Much of the MSL-related literature addresses how to obtain unbiased approxima-
tions to L(Z,θ). A key discovery has been that some simulators can approximate an
integral with fewer repetitions if certain correlated deterministic sequences are used
instead of pseudorandom numbers. Three of the six MSL papers in this issue discuss
Stata implementations of the most important methods. Cappellari and Jenkins (2006)
and Gates (2006) discuss the most commonly used method for approximating the mul-
tivariate normal distribution by simulation and their distinct Stata implementations.
These two papers also discuss how this simulator relies on sequences of numbers be-
tween 0 and 1 to approximate the multivariate normal. Cappellari and Jenkins (2006)
and Drukker and Gates (2006) discuss the deterministic sequences of correlated num-
bers that Bhat (2001) and Train (2000) have shown to dramatically reduce the number
of simulations required to approximate some likelihoods.

Although Gates (2006), Drukker and Gates (2006), and Cappellari and Jenkins
(2006) cover some of the same topics, their treatments and accompanying commands are
different. Cappellari and Jenkins (2006) provide more examples of how to use the meth-
ods, whereas Gates (2006) and Drukker and Gates (2006) provide more detail on how
and why the methods work. The Gates routines provide some important functionality
not available in the Cappellari–Jenkins version.3

Haan and Uhlendorff (2006) compare the computational burden of an MSL estima-
tor to a standard maximum likelihood estimator that approximates the integral by
adaptive quadrature. Although the MSL estimator does surprisingly well for such a
low-dimensional problem, their simulation methodology shows how researchers can de-
termine an R for their datasets. The idea is to start with a small R, say, R =

⌊
N .55

⌋
,

and then repeat the estimation with higher values of R until the point estimates and the
log likelihood settle down. This method is analogous to the one used by [XT] quadchk
to determine the correct number of quadrature points.

Because of the high-dimensional integrals, MSL is often applied to construct estima-
tors for the parameters of multiple discrete-outcome models. Deb and Trivedi (2006)
and Stewart (2006) present Stata commands that implement MSL estimators in this
vein. Deb and Trivedi (2006) discuss their MSL estimator for the parameters of a neg-
ative binomial regression model with a multinomial, endogenous treatment and their
mtreatnb command, which implements the estimator in Stata. Stewart (2006) presents
his redpace command for estimating the parameters of random-effects dynamic probit
models with autocorrelated errors by MSL. Stewart (2006) also presents the method
of choosing R discussed above and some related results showing how much the point
estimates can vary with seed.

David M. Drukker, Guest Editor
StataCorp
College Station, TX

ddrukker@stata.com

3. In particular, the program discussed in Gates (2006) produces Hammersley as well as Halton
sequences, and the simulator discussed in Drukker and Gates (2006) offers derivatives not available in
the Cappellari–Jenkins version.
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