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Multiple imputation of missing values:
of ice

Patrick Royston
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1 Introduction

Royston (2004) introduced mvis, an implementation for Stata of MICE, a method of
multiple multivariate imputation of missing values under missing-at-random (MAR) as-
sumptions. In a second article, Royston (2005) described ice, an upgrade incorporating
various improvements and changes to the software based on personal experience, dis-
cussion with colleagues, and user requests. This article describes an update to ice.
The changes are less substantial but nevertheless important enough to warrant a brief
explanation. The major modification is that the default method of imputing missing
values in ice is now by sampling from the posterior predictive distribution rather than
by predicted mean matching.

The ice system comprises five ado-files: ice, micombine, mijoin, misplit, and
uvis. The last three programs have not been changed and are included in the present
release for the sake of completeness.

2 Syntax

ice mainvarlist using filename [zf] [m} [weight] [, b_oot[(varlist)}
cc(ecvarlist) cmd(emdlist) cycles(#) dryrun eq(eglist) genmiss(string)
id(string) m(#) @tch[(varlist)] on(warlist) noconstant noshoweq

passive (passivelist) replace seed(#) substitute(sublist) trace(filename) ]

uvis regression_cmd yvar zvarlist [zf] [m] [weight], gen(newvarname)

[noconstant boot match replace &ed(#)}

where regression_cmd may be logistic, logit, mlogit, ologit, or regress. All weight
types supported by regression_cmd are allowed.
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micombine regression_cmd [yvar] [covarlist] [zf] [m] [weight] [, br
noconstant detail eform(siring) genxb(newvarname) impid(varname) lrr

obsid(varname) regression_cmd_options ]

where regression_cmd may be clogit, cnreg, glm, logistic, logit, mlogit, nbreg,
ologit, oprobit, poisson, probit, qreg, regress, rreg, stcox, streg, or xtgee.
All weight types supported by regression_cmd are allowed.

mijoin, clear [m(#) im_pid(vamame)]

misplit, clear [m(#) imipid(varname)]

3 Options

Only the changes to options are described.

3.1 Options for ice

draw[ (varlist) } has been replaced with match[ (varlist) ] match[ (varlist) ] instructs
that each member of varlist be imputed with the match option of uvis. This option
provides prediction matching for each member of wvarlist. If (varlist) is omitted,
all relevant variables are imputed with the match option of uvis. The default, if
match() is not specified, is to draw from the posterior predictive distribution of each
variable requiring imputation.

trace (filename) allows one to monitor the convergence of the MICE algorithm. For each
original variable with missing values, the mean of the imputed values is stored as a
variable in filename, together with the cycle number at which that mean was calcu-
lated. The results are stored only for the final imputation. For diagnostic purposes,
it is sensible to run trace() with m(1) and many cycles, such as cycles(100).
When the run is complete, it is helpful to load filename into memory and plot the
mean for each imputed variable against the cycle number. If necessary, smoothing
may be applied to clarify any apparent pattern. Convergence is judged to have oc-
curred when the pattern of the imputed means is random. The number of cycles
needed for convergence is usually obvious from the appearance of the plot.

3.2 Options for uvis

draw has been replaced with match. match creates imputations by prediction matching.
The default is to draw imputations at random from the posterior distribution of
the missing values of ywvar, conditional on the observed values and the members of
zvarlist.
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4 What is new?

The principal changes to ice are as follows:

. The default method of imputation involves drawing from the posterior predictive
distribution.

. With prediction matching in uvis, imputation is made at random among candi-
date values of yvar if more than one observation satisfies the matching criterion.
Previously, it was likely that just one value of yvar would be selected in this
situation, giving inappropriately restricted imputations.

. When arranging the system of chained equations that is the heart of the MICE
algorithm, variables are imputed in order of increasing missingness. The variable
with the least missingness is imputed first, followed by that with the second, lowest
amount, and so on. This approach may speed up convergence to the conditional
distribution for each variable. Previously the order was arbitrary (it was base on
the order of variables in mainvarlist).

. ice reports the number of observations containing 0, 1, 2, ... missing values before
proceeding with the imputation. Use of the dryrun option also gives this report.

5 Example

I will compare in a simple example with artificial data the use of match with drawing
from the posterior. The dataset test2.dta contains n = 120 observations on two
variables, x and y, related by the equation

yi = 6x; + e

where the errors e; are normally distributed with mean 0 and variance 1. y and x
are strongly correlated (Pearson r = .985). Forty values each of x and y are deleted
completely at random, leaving a dataset in which 40 pairs of values of x and y are
observed and 80 pairs have a missing value of either x or y.

Figure 1 shows the relationship between y and x in one imputation using prediction
matching with 1, 2, 3, 5, 7, or 10 cycles of the MICE algorithm.

(Continued on next page)
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Prediction matching
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Figure 1: Artificial data. Imputation of x and y using prediction matching after different
numbers of cycles of the MICE algorithm. Open circles, y missing; filled circles, x missing.

The Stata command used was

. ice x y using filenamel, match(x y) seed(11) trace(filename2) cycles(100) m(1)

The open circles show values for which y has been imputed, and the filled circles,
values for which x has been imputed. The 40 pairs in which both x and y were ob-
served are omitted. The algorithm appears to converge after about 10 cycles. Note the
occurrence of “wild” points for small numbers of cycles that are far away from the line
y = 6.

Figure 2 shows a trace of the means of x and y for the first 100 cycles of the MICE
algorithm, stored in filename?2.
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Trace: Prediction matching
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Figure 2: Artificial data. Trace of the first 100 cycles of the MICE algorithm using
prediction matching. Horizontal lines, mean of original observations before being set to
missing.

The means are initially wild and appear to stabilize after about 20 cycles. The
horizontal lines show the mean of the original observations before being set to missing.
Most of the imputed means of x are below or substantially below the correct value,
suggesting the possibility of bias in the imputation of x in this example. Furthermore,
there may be a tendency for the means to form a pattern of oscillation rather than the
completely random appearance we would wish for.

Figure 3 repeats figure 1 but using draws from the posterior predictive distributions
of x and y instead of prediction matching.

(Continued on next page)
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Draw from predictive distribution
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Figure 3: Artificial data. Imputation of x and y using draws from the posterior predic-
tive distribution after different numbers of cycles of the MICE algorithm. Open circles,
y missing; filled circles, x missing.

The Stata command is the same as before, except that match(x y) has been omit-
ted to activate the default drawing algorithm. Two features are apparent. First, the
algorithm settles down rapidly and smoothly, with no wild values appearing; the scatter
about the line y = 6z is progressively reduced as the number of cycles increases. About
five cycles seems enough for convergence. Second, richer sets of imputations are created,
since the algorithm is no longer restricted to imputing only observed values of x and y.

Finally, figure 4 repeats figure 2 for the draw method.
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Trace: Draw from predictive distribution
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Figure 4: Artificial data. Trace of the first 100 cycles of the MICE algorithm using draws
from the posterior predictive distributions.

The rapid convergence is clear. The imputed means of x now include the correct
value. There is no tendency to oscillation.

The example clearly points to the advantages of the draw method when the normality
assumptions for continuous variables are fulfilled, as here. The draw method is many
times faster than prediction matching.

I now consider in general terms what may be done using data from imputing con-
tinuous variables when the normality assumptions fail.

6 Imputing continuous variables

When a continuous variable X has missing values, there are essentially four options for
imputing it with ice:

1. Assume normality for X and draw from the posterior predictive distribution (the
default). Example of ice command with test2.dta:

. ice x y using filename, m(20)

2. Transform X toward (approximate) normality and draw from the posterior pre-
dictive distribution. Retransform back to the original scale. For example,

. gen logx=log(x)

. gen logy=log(y)

. ice logx logy using filename, m(20)
. use filename, clear
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. replace x=exp(logx)
. replace y=exp(logy)

3. Use prediction matching. For example,
. ice x y using filename, m(20) match(x y)
4. Use ordinal logistic regression (ologit). For example,

. ice x y using filename, m(20) cmd(ologit)

Option 1 is optimal if the normality assumption is (reasonably) appropriate, as
in the above example. However, both normality and a continuous distribution for X
are assumed. An observed distribution that is heavily grouped or rounded may not
give sensible imputed values, since imputations will fall between the observed values.
Furthermore, because of the effect of grouping the standard deviation may be incorrect.
A possibility is to round the imputed values to resemble the pattern in the observed
distribution.

Option 2 should be considered for positively skewed variables; the distribution may
often resemble a lognormal. Again, if the original data are grouped, rounding may be
considered after transformation back to the original scale. A related possibility is to use
the more general Box—Cox transformation to normality (Stata’s boxcox command).

Option 3 is a reasonable general choice, though concerns exist that prediction match-
ing may give biased imputations, convergence may be slow, and computation may be
lengthy (compounded by the need for more MICE cycles).

Option 4 is particularly useful with ordinal variables that either are intrinsically
categorical or take a restricted set of values because rounding has been applied. In Stata,
the ologit command is restricted to response variables with 50 or fewer categories, so
variables with more than 50 distinct values will need to be grouped or rounded before
imputation is performed.

6.1 Example

As an example of the problems of option 1, imputation with an inappropriate assumption
of normality, figure 5 shows the distribution of the variable x5 (number of positive lymph
nodes) in the breast cancer dataset brcaex.dta analyzed by Royston (2004).
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Draw from predictive distribution
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Figure 5: Breast cancer data. Imputation of x5 by drawing from the posterior predictive
distribution, assuming normality. Left panel: distribution of observed x5. Right panel:
distribution of imputed x5.

The distribution of x5 takes the integers 1, 2, ..., and is highly positively skewed,
with more than 25% of the values being 1. The imputed values are symmetrically

distributed about the mean of 5, and many are negative. As an alternative (option 4),
figure 6 shows the results of using drawing and ologit.

Draw, ordered logistic prediction
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Graphs by 1 if mx5 missing, 0 otherwise

Figure 6: Breast cancer data. Imputation of x5 by drawing from the posterior pre-
dictive distribution, using ordinal logistic regression (ologit command). Left panel:
distribution of observed x5. Right panel: distribution of imputed x5.
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The distribution of imputed values of x5 is similar to that of the nonmissing
observations—as it should be, given that the missing values were assigned completely
at random. The results from prediction matching are much the same as this. The log
transformation performs rather less well, although much better than not transforming;
the distributional shape does not come out quite right.

7 Conclusion

This paper further develops the MICE software for Stata. It should be seen as work in
progress. As experience and knowledge increase, I expect to issue further updates of
ice.
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