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Adaptive kernel density estimation

Philippe Van Kerm
CEPS/INSTEAD, G.-D. Luxembourg

Abstract. This insert describes the module akdensity. akdensity extends the
official kdensity that estimates density functions by the kernel method. The
extensions are of two types: akdensity allows the use of an “adaptive kernel”
approach with varying, rather than fixed, bandwidths; and akdensity estimates
pointwise variability bands around the estimated density functions.

Keywords: st0037, adaptive kernel density, local bandwidths, variability bands

1 Overview

Stata offers one official command for nonparametric estimation of density functions:
kdensity; see [R] kdensity. Important user-written extensions have also been devel-
oped in Salgado-Ugarte et al. (1993), Salgado-Ugarte et al. (1995), and Salgado-Ugarte
and Pérez-Hernández (2003) for bandwidth selection and estimation with adaptive ker-
nel functions. The present insert describes akdensity, a module that further extends
the possibilities offered for kernel density estimation in Stata. Extensions are of two
types. First, akdensity allows the use of a varying, rather than fixed, bandwidth as
in Salgado-Ugarte et al. (1993) and Salgado-Ugarte and Pérez-Hernández (2003). The
main improvement over existing modules in this regard is in computation speed. The al-
gorithm implemented permits a much faster estimation when dealing with large datasets.
akdensity is also more flexible in that it allows weights, user-defined grid points, and
both Gaussian and Epanechnikov kernel functions. Second, akdensity provides estima-
tion of pointwise variability bands. The new command is compatible with both Stata 7
and Stata 8, using the appropriate graphics engine under both versions.

1.1 Adaptive kernel density estimation and variability bands

Usefulness of varying (or local) bandwidths is widely acknowledged to estimate long-
tailed or multi-modal density functions with kernel methods, when a fixed (or global)
bandwidth approach may result in undersmoothing in areas with only sparse observa-
tions while oversmoothing in others. Varying the bandwidth along the support of the
sample data gives flexibility to reduce the variance of the estimates in areas with few
observations, and reducing the bias of the estimates in areas with many observations.
Kernel density estimation methods relying on such varying bandwidths are generally
referred to as ‘adaptive kernel’ density estimation methods. For an introductory ex-
position of such methods, see, e.g., Silverman (1986), Bowman and Azzalini (1997),
or Pagan and Ullah (1999). Salgado-Ugarte et al. (1993), Salgado-Ugarte et al. (1995),
and Salgado-Ugarte and Pérez-Hernández (2003) provide discussions in the context of
Stata, addressing both fixed and varying bandwidth methods.

c© 2003 Stata Corporation st0037
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An adaptive kernel approach adapts to the sparseness of the data by using a broader
kernel over observations located in regions of low density. This is done by varying the
bandwidth inversely with the density. As Silverman (1986, 101) puts it, “An obvious
practical problem is deciding in the first place whether or not an observation is in a
region of low density.” Adaptive kernel density estimation deals with this question by
using an iterative procedure: An initial (fixed bandwidth) density estimate is computed
to get an idea of the density at each of the data points, and this pilot estimate is used
to adapt the size of the bandwidth over the data points when computing a new kernel
density estimate.

The second feature of akdensity is the possibility to request the estimation of
pointwise variability bands around the estimated density functions. These bands are
constructed as the estimated density at a given grid point x, f̂(x), plus or minus b

times the estimated standard error of f̂(x). Note that one should not interpret the
bands as providing (pointwise) confidence intervals for f(x) (setting, for example, b at
1.96 to obtain a 95% confidence interval). Kernel density estimates are asymtotically
biased, with a bias varying with the bandwidth and the shape of the underlying ‘true’
density function. For a given bandwidth, the bias does not tend to 0 as the sample
size increases. Use of the words ‘variability bands’, rather than ‘confidence bands’, is
meant to emphasize that the bands quantify the variability of the density estimate but
do not take the bias of the estimate into account, and thus do not provide a means
of examining particular hypotheses about the density function (Bowman and Azzalini
1997, 29–30).

1.2 Methods and formulas

The method implemented in akdensity is the now standard adaptive two-stage estima-

tor proposed in Abramson (1982). It is based on the construction of a local bandwidth

factor, λi, at each sample point. The local bandwidth factors have unit (geometric)
mean and multiply a global fixed bandwidth, h. Thus, h controls the overall degree of
smoothing while the λi stretch or shrink the sample points bandwidths to adapt to the
density of the data.

The adaptive kernel density estimate is given by

f̂(x) =
1∑

n

i=1
wi

n∑

i=1

wi

hi

K

(
x − xi

hi

)
(1)

where the xis are the data points (associated with weights wi), K is a kernel function,
and hi = h × λi. (Compare with [R] kdensity.)

The local bandwidth factors are proportional to the square root of the underlying
density functions at the sample points,

λi = λ(xi) =
{

G/f̃(xi)
}0.5

(2)
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where G is the geometric mean over all i of the pilot density estimate f̃(x). The pilot
density estimate is a standard fixed bandwidth kernel density estimate obtained with h
as bandwidth.1

The variability bands are based on the following expression for the variance of f̂(x)
given in Burkhauser et al. (1999):

V
{

f̂(x)
}

=

(
n∑

i=1

w2

i

n2

)
f(x)

hλ(x)

∫
{K(s)}

2
ds

The b parameter that controls the number of standard errors to add around f̂(x) to
construct the variability bands is specified by the user.

2 Implementation notes

akdensity is packaged in two modules. The engine of the package is akdensity0.
It allows kernel density estimation with either fixed or observation-specific bandwidths
(i.e., the bandwidth parameter can be either a scalar or a variable name), and optionally
generates local bandwidth factors after estimation of the density function. It produces
no graphical output. akdensity is a user-friendly wrapper that mimics the syntax
of the official kdensity and generates the two-stage adaptive kernel density estimates
by making repeated calls to akdensity0. The first call uses a fixed bandwidth and
generates the local bandwidth factors; the second call uses the varying bandwidths
obtained from the local bandwidth factors.

Equations (1) and (2) show that local bandwidth factors must be computed for each
sample point. This requires an estimate of the pilot density function at each sample
point. Computing a kernel density estimate for each sample point can be prohibitively
slow for large datasets. To speed up calculations, akdensity0 estimates the pilot density
function for a grid of points (specified by the user), and uses linear interpolation to
approximate the density at sample points located between two grid points. It is thus
useful to use a grid that spans outside of the data range. This procedure leads to
considerable speed gains with large datasets.

akdensity is more limited than kdensity in one respect: The choice of the kernel
function. Only Epanechnikov and Gaussian kernel functions have been implemented.
Note, however, that these are popular choices, and it is widely accepted that the choice
of kernel is not a crucial issue.

1In the unweighted case, with a Gaussian kernel function, the methods are exactly as in
Salgado-Ugarte et al. (1993) and Salgado-Ugarte and Pérez-Hernández (2003): estimates obtained with
both akdensity and the existing adgakern or varwiker are identical, although akdensity offers some
extra flexibility in practice.
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3 Syntax

The syntax for akdensity follows kdensity:

akdensity varname
[
weight

] [
if exp

] [
in range

] [
, nograph noadaptive

generate(newvar x newvar density) n(#) width(#)
[
epan | gauss

]
normal

student(#) at(var x) stdbands(#) symbol(. . .) connect(. . .) title(string)

graph options
]

The only new options are stdbands and noadaptive. All the other options are
described in [R] kdensity.

stdbands(#) requests the estimation of variability bands, and specifies the number of
standard errors above and below the estimates to be used (a positive number). If the
generate option is specified, the estimated bands are stored in two new variables,
newvar density up and newvar density lo.

noadaptive can be specified to obtain the standard fixed bandwidth kernel density
estimate. The resulting density is exactly as produced by kdensity. This may be
used to obtain the variability bands around the fixed kernel density estimates.

akdensity is compatible with both Stata 7 and Stata 8. It uses the newly imple-
mented graphics engine if called by Stata 8, and otherwise runs the former engine for
Stata 7. As a consequence, the allowed graphics options differ according to the release
of Stata being used.2

The syntax for the engine command, akdensity0, is similar:

akdensity0 varname
[
weight

] [
if exp

] [
in range

]
, width(# | varname)

at(var x) generate(newvar density)
[
stdbands(#) lambda(string)

[
epan | gauss

]
double

]

width(), at(), and generate() are not optional. Most options are as in kdensity

or akdensity. Note, however, that the width option can here be either a scalar or a
variable name containing observation-specific bandwidths. Also, generate must specify
a single new variable name to store the estimated value of the density function at the
grid points. The options specific to akdensity0 are the following:

lambda(string) requests the estimation of local bandwidth factors based on the esti-
mated density function, and specifies a new variable name where these values are to
be stored.

double requests the use of double precision in the estimation of the density functions
and standard error bands.

2Remember that, if need be, the Stata 7 engine can be called from within Stata 8 by using the
version 7: prefix command; i.e., version 7: akdensity (...).
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4 Example

To illustrate the features of akdensity and compare the fixed and adaptive kernel
density estimates, I use the coral-trout-length data illustrating both the STB article by
Salgado-Ugarte et al. (1993) and the official documentation of kdensity. The data,
available from the Stata Press web site, consist of 316 length observations of coral trout
(in mm.). The graphics presented have been obtained with the Stata 7 graphics engine.

Let me first draw the default estimates obtained with both kdensity and akdensity.
Both use the default number of 50 equally spaced grid points and use the “rule-of-the-
thumb” global bandwidth described in [R] kdensity.

. use http:\\www.stata-press.com\data\r7\trocolen.dta, clear

. kdensity length, nogr gen(x fixed)

. akdensity length, nogr gen(adaptive) at(x)
Two-stage adaptive kernel density estimation
Step 1: Pilot density and local bandwidth factors estimation
Step 2: Adaptive kernel density estimation

. label var fixed "Fixed kernel"

. label var adaptive "Adaptive kernel"

. graph fixed adaptive x, xlab ylab c(ll) s(dS)

length

 Fixed kernel  Adaptive kernel (2 steps)

200 300 400 500 600

0

.002

.004

.006

Figure 1: Fixed vs. adaptive kernel density estimates (bandwidth=20).

The main effect of using adaptive kernel estimation in this example is to separate
out more clearly the two modes of the distribution (see Figure 1). The fixed bandwidth
tends to oversmooth the middle of the distribution. On the contrary, the adaptive kernel
estimate is smoother in the tails (especially in the lower tail).
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One advantage of the methods implemented here is that the overall smoothing is still
controlled by the choice of the global bandwidth. This allows fine tuning by changing
the global bandwidth parameter. Figure 2 depicts the previous estimators obtained by
setting the global bandwidth to 15 (the automatically computed global bandwidth as in
Figure 1 is about 20). See Salgado-Ugarte and Pérez-Hernández (2003) for a detailed
discussion of bandwidth selection procedures in this context.

length

 Fixed kernel  Adaptive kernel

200 300 400 500 600

0

.002

.004

.006

.008

Figure 2: Fixed vs. adaptive kernel density estimates (bandwidth=15).

By drawing the standard error bands, it is possible to see the impact of varying the
bandwidth on the variability of the estimates.3 As mentioned earlier, adaptive kernel
methods tend to reduce the variability of the estimates in areas of low density and
increase it in areas with many observations. This accompanies a bias reduction (resp.
increase) in areas where the data are numerous (resp. sparse). Variability bands for both
the fixed and adaptive kernel density estimates in the current example are depicted in
Figure 3. These pictures are obtained as follows (the commands also illustrate the use
of the n(#) option to change the number of evaluation points, and of the at(varname)

option for user-supplied grids):

. akdensity length, nogr stdbands(2) gen(x2 fixed3) noadapt n(200)
Standard kernel density estimation

. akdensity length, nogr stdbands(2) gen(adaptive3) at(x2)
Two-stage adaptive kernel density estimation
Step 1: Pilot density and local bandwidth factors estimation
Step 2: Adaptive kernel density estimation

. label var fixed3 "Fixed kernel"

. label var adaptive3 "Adaptive kernel"

. label var fixed3_up "with var. bands"

3Remember that the bands are centered on f̂(x) and ignore the bias of the estimates.
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. label var adaptive3_up "with var. bands"

. gr fixed3 adaptive3 fixed3_up adaptive3_up fixed3_lo adaptive3_lo x2,
> c(l[-]ll[-]ll[-]l) s(iiiiii) pen(232323) xlab ylab

length

 Fixed kernel  Adaptive kernel
  with var. bands   with var. bands

200 300 400 500 600

0

.002

.004

.006

.008

Figure 3: Fixed vs. adaptive kernel density estimates with variability bands.

Finally, to illustrate how the engine akdensity0 can be used on its own, let me
draw a three-step adaptive estimator. In this case, the kernel density estimate obtained
in the second step is used as a new pilot density, and the estimation is repeated. The
three-step estimator is obtained as follows:

. akdensity0 length, at(x) gen(pilot) width(20) lambda(lambda)

. gen hi = 20*lambda

. akdensity0 length, at(x) gen(pilot2) width(hi) lambda(lambda2)

. replace hi = 20*lambda2
(316 real changes made)

. akdensity0 length, at(x) gen(adaptive4) width(hi)

. label var adaptive "Adaptive kernel (2 steps)"

. label var adaptive4 "Adaptive kernel (3 steps)"

. gr fixed adaptive adaptive4 x, c(ll[-]l[_]) s(odS) xlab ylab

(Continued on next page)
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length

 Fixed kernel  Adaptive kernel (2 steps)
 Adaptive kernel (3 steps)

200 300 400 500 600

0

.002

.004

.006

Figure 4: Fixed vs. two-step and three-step adaptive kernel density estimates.

The first call to akdensity generates the fixed bandwidth pilot estimate and a first
set of local bandwidth factors. In the second call, these local factors multiply the
global bandwidth to obtain an adaptive kernel density estimate. A second set of local
bandwidth factors is constructed based on this new density estimate. Finally, a third
call is made using this second set of local factors to obtain the final estimate. Note,
however, from Figure 4, that this three-step estimate does not differ widely from the
two-step estimates.
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