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From the help desk: Demand system estimation

Brian P. Poi
Stata Corporation

Abstract. This article provides an example illustrating how to use Stata to
estimate systems of household demand equations. More generally, the techniques
developed here can be used to estimate any system of nonlinear equations using
Stata’s maximum likelihood routines.

Keywords: st0029, nonlinear estimation, maximum likelihood, demand equations

1 Household demand analysis

The goal of demand analysis is to model households’ expenditure patterns on a group
of related items in order to obtain estimates of price and income elasticities and to esti-
mate consumer welfare. In some applications, broad categories, such as food, clothing,
housing, and transportation, are used. Other applications study the demand for various
categories of food. Although a bit dated, Deaton and Muellbauer (1980b) remains a
classic introduction to the subject.

Since Stone’s (1954) linear expenditure system, there has been widespread interest
in choosing an estimable system of equations to represent household demand for various
goods. Two of the most well-known include the translog system of Christensen et al.
(1975) and the Deaton and Muellbauer (1980a) almost ideal demand system (AIDS). Of
these two approaches, the AIDS has proven to be more popular, because it permits exact
aggregation over households and is easier to estimate. More recently, Banks et al. (1997)
have presented a generalization of the AIDS model that includes a quadratic expenditure
term, and so they called their model the QUAIDS; this paper discusses estimation of that
demand system.

Demand systems are typically specified with expenditure shares as the dependent
variables. A household’s expenditure share for good i is defined as

wi ≡
piqi

m

where pi is the price paid for good i, qi is the quantity of good i purchased or consumed,
and m is the total expenditure on all goods in the demand system. With this definition
of m,

K∑

i=1

wi = 1

where K is the number of goods in the system. In the QUAIDS model, expenditure share
equations have the form

c© 2002 Stata Corporation st0029
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wi = αi +

K∑

j=1

γij ln pj + βi ln

{
m

P (p)

}
+

λi

b(p)

[
ln

{
m

P (p)

}]2

(1)

where p is the vector of all prices, b(p) is defined as

b(p) ≡

K∏

i=1

pβi

i (2)

and lnP (p) is a price index defined as

ln P (p) ≡ α0 +

K∑

i=1

αi ln pi +
1

2

K∑

i=1

K∑

j=1

γij ln pi ln pj (3)

Economic theory imposes several constraints on the parameters. The fact that∑
i wi = 1, often called the adding-up condition, requires that

K∑

i=1

αi = 1
K∑

i=1

βi = 0
K∑

i=1

λi = 0 and
K∑

i=1

γij = 0 ∀ j (4)

Moreover, since demand functions are homogeneous of degree zero in (p, m),

K∑

j=1

γij = 0 ∀ j (5)

Slutsky symmetry implies that
γij = γji (6)

Usually, α0 is difficult to estimate directly and so is set equal to the minimum level of
expenditure that would be needed for subsistence if all prices were equal to one; for a
justification of this, see Deaton and Muellbauer (1980a).

An error term ǫi is added to the right-hand side of equation (1) for estimation pur-
poses. In addition, ǫ ≡ [ǫ1, . . . , ǫk] is usually assumed to have a multivariate normal
distribution with covariance matrix Σ. However, the adding-up condition implies that
Σ is singular. Therefore, one of the K demand equations is dropped from the system,
the remaining (K−1) equations are estimated by maximum likelihood, and then the pa-
rameters of the final equation are recovered using the parameter constraints mentioned
above. Barten (1969) showed that it makes no difference which equation is dropped.
A straightforward application of the delta method then yields the covariance matrix,
including the parameters for the Kth equation.

The concentrated log-likelihood function for the (K − 1) equations in a sample of N
households is

ln L = −
N

2

[
(K − 1) {1 + ln(2π)} + ln |S|

]
(7)
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where N is the number of households or individuals and

S ≡
1

N

N∑

t=1

ǫ̂
∗

t ǫ̂
∗
′

t (8)

where t indexes households and ǫ̂
∗

t ≡ [w1t − ŵ1t, . . . , wK−1,t − ŵK−1,t].

2 An example

This section illustrates the technique outlined in the previous section by estimating a
four-equation demand system using data from the 1987–1988 Nationwide Food Con-
sumption Survey conducted by the United States Department of Agriculture. Demands
for four categories of food are estimated: meats, fruits and vegetables, breads and cere-
als, and miscellaneous. The sample used here consists of 4,048 households. Poi (2002)
contains a more detailed discussion of the data and fits a slightly larger model, which
included a separate category for dairy products.

Stata’s ml commands provide a very convenient set of tools for fitting user-defined
maximum likelihood models. Gould and Sribney (1999) provides an excellent tutorial.
When the equations to be estimated are linear or nearly so, the ml commands’ θ-notation
makes coding likelihood functions particularly simple. In method lf, the quantity x′

iβ is
computed automatically for each equation. With methods d0, d1, and d2, the mltheta

command is used to evaluate that inner product.

In the case of the system estimated here, however, the demand equations are inher-
ently nonlinear. Moreover, cross-equation restrictions must be placed on the parame-
ters. To reduce the total number of parameters to estimate, the concentrated form of
the likelihood function is maximized. What is needed, then, is an approach that allows
the likelihood evaluator to receive an arbitrary vector of parameters that will then be
manipulated to compute the likelihood function. While a large majority of statistical
models can be written in terms of x′

iβ directly, in this application, having that expres-
sion evaluated automatically provides virtually no benefit. Here, complete flexibility to
manipulate the parameters of the model is required.

With K = 4 equations, there are a total of 3(K−1)+ 1

2
K(K−1) = 15 parameters to

estimate. For estimation purposes, these parameters are best viewed as a single vector
θ of parameters consisting of the first three αs, then the first three βs, then vech(Γ∗),
where Γ

∗ contains only the first (K−1) rows and columns of Γ, and finally the first three
λs. The parameters for the fourth equation will then be obtained using the restrictions
shown in equations (4), (5), and (6).

The dataset food.dta consists of four variables named w1, w2, w3, and w4, which
contain the four expenditure shares for each household. Variables lnp1 through lnp4

contain the logarithms of prices paid by each household for the four food categories.
Finally, the variable lnexp contains the logarithm of expenditures on the foods.

Several program files accompany this article and are downloadable from the Stata

Journal web site. Because the key to understanding nonlinear multivariate estimation
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in Stata is being able to program the likelihood function, those programs are explained
in some detail here. The program vec sum.ado simply returns the sum of the ele-
ments of a vector and is self-explanatory. As with all type d0 likelihood evaluators,
lnl quaids.ado is passed the argument todo, the parameter vector b, and the scalar
lnf, which is to be filled with the overall log likelihood. The evaluator first passes the
vector of parameters to program quaids params.ado, which recovers the actual K × 1
vectors α, β, and λ and the K×K matrix Γ. This program splits up b according to the
scheme discussed in the previous paragraph and then, with the help of the vec sum.ado

program, imposes the necessary parameter constraints. In all of these programs, the
global variable $NEQN represents the number of equations K.

Once lnl quaids.ado has the parameters in a usable form, the next step is to
compute the price index variable defined in equation (3); the global variable $ANOT is
used to hold the parameter α0. The program then calculated deflated incomes m/P (p)
and the b(p) term defined in equation (2). With these preliminaries, K variables con-
taining the residuals from the expenditure share equations are computed, and Stata’s
matrix accum command and a few matrix manipulations yield the covariance matrix
(8). Computing the actual likelihood (7) then requires just one more line of code.

After these programs have been saved, estimation is straightforward and proceeds as
with most other ml estimation. To start, load the data and initialize the global variables
$A NOT and $NEQN:

. use food, clear

. global A_NOT = 5

. global NEQN = 4

Next, specify the model using the ml model command:

. ml model d0 lnl_quaids () /a2 /a3 /b1 /b2 /b3 /g11 /g21 /g31 /*
> */ /g22 /g32 /g33 /l1 /l2 /l3

Stata’s ml model command requires that at least one equation be specified with the
(eq) syntax. Therefore, one cannot use /a1 to refer to α1. After the model has been
specified, give instructions to find initial parameters and then maximize the likelihood
function. Displaying the coefficients will be handled later, so for now, use the nooutput
option with ml maximize.

. ml search
initial: log likelihood = 4475.42
improve: log likelihood = 4475.42
alternative: log likelihood = -18282.737
rescale: log likelihood = 6077.236
rescale eq: log likelihood = 10683.67

(Continued on next page)
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. ml maximize, noclear nooutput

initial: log likelihood = 10683.67
rescale: log likelihood = 10683.67
rescale eq: log likelihood = 10785.383
Iteration 0: log likelihood = 10785.383 (not concave)
Iteration 1: log likelihood = 11816.321 (not concave)
Iteration 2: log likelihood = 12291.816
Iteration 3: log likelihood = 12445.116
Iteration 4: log likelihood = 12705.123
Iteration 5: log likelihood = 13070.869
Iteration 6: log likelihood = 13093.257
Iteration 7: log likelihood = 13093.487
Iteration 8: log likelihood = 13093.487

The noclear option is included so that ml report can be used if desired.

One could now list the estimated parameter vector e(b) and covariance matrix
e(V) produced by mloutput, but they do not include the parameters for the Kth equa-
tion. Program quaids vec.ado takes the parameter vector for the first K − 1 equa-
tions and returns a vector that includes the parameters for all K equations. Program
quaids params.ado can also be used to obtain separate matrices for α, β, Γ, and λ.
To get the entire parameter vector, type

. matrix b = e(b)

. quaids_vec b theta

The vector theta now contains all estimated parameters.

The delta method is used to compute the covariance matrix. Letting f(θ) be the
function that transforms θ into the parameter vector for all K equations, the delta
method requires computation of ∂f(θ)/∂θ′. Program quaids delta.ado computes this
derivative matrix for the present application, where K = 4; generalizing the program
to accept any value of K is difficult because of the terms involving the γs. To get the
covariance matrix, do the following:

. matrix v = e(V)

. quaids_delta r

. matrix var = r*v*r’

The final step before displaying the coefficients is to provide row and column names
to the parameter vector and covariance matrix so that they can be posted and dis-
played using estimates post and estimates display. The next several lines of code
accomplish all of this:

. forvalues i = 1/$NEQN {
2. global anames "$anames alpha:‘i’"
3. global bnames "$bnames beta:‘i’"
4. global lnames "$lnames lambda:‘i’"
5. forvalues j = ‘i’/$NEQN {
6. global gnames "$gnames gamma:‘j’‘i’"
7. }
8. }
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. global names "$anames $bnames $gnames $lnames"

. matrix colnames theta = $names

. matrix colnames var = $names

. matrix rownames var = $names

. estimates post theta var

. estimates display

Coef. Std. Err. z P>|z| [95% Conf. Interval]

alpha
1 .3136616 .0087845 35.71 0.000 .2964443 .330879
2 .2712567 .0067258 40.33 0.000 .2580743 .2844391
3 .1052015 .0034402 30.58 0.000 .0984587 .1119442
4 .3098802 .0064653 47.93 0.000 .2972084 .3225519

beta
1 .0099745 .0112141 0.89 0.374 -.0120047 .0319537
2 -.0261289 .008397 -3.11 0.002 -.0425868 -.0096711
3 .0041683 .0043783 0.95 0.341 -.004413 .0127496
4 .0119861 .0089786 1.33 0.182 -.0056117 .0295839

gamma
11 .1214999 .0057281 21.21 0.000 .110273 .1327268
21 -.0522583 .0039358 -13.28 0.000 -.0599724 -.0445443
31 -.0351566 .0021892 -16.06 0.000 -.0394473 -.0308659
41 -.034085 .0036337 -9.38 0.000 -.0412069 -.0269631
22 .0644288 .0044602 14.45 0.000 .0556869 .0731707
32 -.001202 .0019829 -0.61 0.544 -.0050883 .0026843
42 -.0109685 .0029765 -3.69 0.000 -.0168023 -.0051346
33 .0425055 .0017735 23.97 0.000 .0390295 .0459815
43 -.0061469 .0016456 -3.74 0.000 -.0093723 -.0029215
44 .0512004 .003652 14.02 0.000 .0440425 .0583582

lambda
1 -.0025218 .0043894 -0.57 0.566 -.011125 .0060813
2 -.0000235 .0032918 -0.01 0.994 -.0064753 .0064282
3 .0011219 .0017151 0.65 0.513 -.0022396 .0044835
4 .0014234 .0035208 0.40 0.686 -.0054771 .008324

Now that the correct parameter vector and covariance matrix have been posted,
Stata’s test command can be used to conduct Wald tests.

. test [lambda]1 = 0, notest

( 1) [lambda]1 = 0.0

. test [lambda]2 = 0, notest accumulate

( 1) [lambda]1 = 0.0
( 2) [lambda]2 = 0.0

. test [lambda]3 = 0, notest accumulate

( 1) [lambda]1 = 0.0
( 2) [lambda]2 = 0.0
( 3) [lambda]3 = 0.0
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. test [lambda]4 = 0, accumulate

( 1) [lambda]1 = 0.0
( 2) [lambda]2 = 0.0
( 3) [lambda]3 = 0.0
( 4) [lambda]4 = 0.0

Constraint 3 dropped

chi2( 3) = 0.58
Prob > chi2 = 0.9020

Notice how parameters are specified here. In Stata’s nomenclature, lambda is an equa-
tion name, and 1, 2, 3, and 4 are the parameter names. More importantly, why was
one of the constraints dropped? First, recall that the adding-up constraint (4) causes
Σ to be singular; this implies that the covariance matrix of all the parameters is also
singular.

. matrix var = e(V)

. display det(var)
1.411e-224

Intuitively, since
∑

i λi = 0, testing

H0 : λi = 0, i = 1, . . ., K

is equivalent to testing

H0 : λi = 0, i = 1, . . ., K − 1

Fortunately, Stata catches the redundancy and drops one of the test’s conditions. Note
that the exact same result is obtained by testing only three of the λs.

. test [lambda]1 = 0, notest

( 1) [lambda]1 = 0.0

. test [lambda]2 = 0, notest accumulate

( 1) [lambda]1 = 0.0
( 2) [lambda]2 = 0.0

. test [lambda]3 = 0, accumulate

( 1) [lambda]1 = 0.0
( 2) [lambda]2 = 0.0
( 3) [lambda]3 = 0.0

chi2( 3) = 0.58
Prob > chi2 = 0.9020

In any event, the quadratic income terms are not statistically significant in this partic-
ular application.

3 Conclusion

This article has discussed estimation of a system of household demand equations subject
to a set of constraints imposed by the expenditure minimization problem. Although
estimation with Stata still requires that a set of programs be written by the user, the
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sample programs here serve as a useful outline for other nonlinear multivariate problems.
For example, the estimation of firms’ cost functions often involves techniques very similar
to those used in demand analysis.

By using Stata instead of a general matrix programming language, one is able to
take advantage of Stata’s powerful, easy-to-use set of ml commands instead of having to
use a general optimization routine. Stata’s ml search command makes finding initial
parameters much easier, and its ml maximize command produces the covariance matrix
automatically. Data handling is also much easier in Stata, as is hypothesis testing.
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